Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(6): 3572-3584, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33616393

RESUMO

The atomic-level tunability of molecular structures is a compelling reason to develop homogeneous catalysts for challenging reactions such as the electrochemical reduction of carbon dioxide to valuable C1-Cn products. Of particular interest is methane, the largest component of natural gas. Herein, we report a series of three isomeric rhenium tricarbonyl complexes coordinated by the asymmetric diimine ligands 2-(isoquinolin-1-yl)-4,5-dihydrooxazole (quin-1-oxa), 2-(quinolin-2-yl)-4,5-dihydrooxazole (quin-2-oxa), and 2-(isoquinolin-3-yl)-4,5-dihydrooxazole (quin-3-oxa) that catalyze the reduction of CO2 to carbon monoxide and methane, albeit the latter with a low efficiency. To our knowledge, these complexes are the first examples of rhenium(I) catalysts capable of converting carbon dioxide into methane. Re(quin-1-oxa)(CO)3Cl (1), Re(quin-2-oxa)(CO)3Cl (2), and Re(quin-3-oxa)(CO)3Cl (3) were characterized and studied using a variety of electrochemical and spectroscopic techniques. In bulk electrolysis experiments, the three complexes reduce CO2 to CO and CH4. When the controlled-potential electrolysis experiments are performed at -2.5 V (vs Fc+/0) and in the presence of the Brønsted acid 2,2,2-trifluoroethanol, methane is produced with turnover numbers that range from 1.3 to 1.8. Isotope labeling experiments using 13CO2 atmosphere produce 13CH4 (m/z = 17) confirming that methane originates from CO2 reduction. Theoretical calculations are performed to investigate the mechanistic aspects of the 8e-/8H+ reduction of CO2 to CH4. A ligand-assisted pathway is proposed to be an efficient pathway in the formation of CH4. Delocalization of the electron density on the (iso)quinoline moiety upon reduction stabilizes the key carbonyl intermediate leading to additional reactivity of this ligand. These results should aid the development of more robust catalytic systems that produce CH4 from CO2.

2.
J Am Chem Soc ; 141(16): 6569-6582, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30925213

RESUMO

The electrocatalytic reduction of carbon dioxide (CO2) could be a powerful tool for generating chemical fuels and feedstock molecules relevant to the chemical industry. One of the major challenges for molecular catalysts remains the necessity of high overpotentials, which can be overcome by identifying novel routes that improve the energetic reaction trajectory of critical intermediates during catalysis. In this combined experimental and computational study, we show that imidazolium functionalization of molecular fac-Mn(CO)3 bipyridine complexes results in CO2 reduction at mild electrochemical potentials in the presence of H2O. Importantly, our studies suggest that imidazolium groups in the secondary coordination sphere promote the formation of a local hydration shell that facilitates the protonation of CO2 reduction intermediates. As such, we propose a synergistic relationship between the functionalized catalyst and H2O, which stands in contrast to other systems in which the presence of H2O frequently has detrimental effects on catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...