Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(12): e2306729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225749

RESUMO

Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.


Assuntos
Anticorpos Monoclonais , Infecções por Vírus Respiratório Sincicial , Humanos , Lactente , Criança , Animais , Ovinos , Camundongos , Idoso , Anticorpos Monoclonais/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Palivizumab/uso terapêutico , Vírus Sinciciais Respiratórios , Pulmão
2.
Bioeng Transl Med ; : e10391, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36248234

RESUMO

The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.

3.
Mol Genet Genomic Med ; 7(9): e911, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31373179

RESUMO

BACKGROUND: OFD1 has long been recognized as the gene implicated in the classic dysmorphology syndrome, oral-facial-digital syndrome type I (OFDSI). Over time, pathogenic variants in OFD1 were found to be associated with X-linked intellectual disability, Joubert syndrome type 10 (JBTS10), Simpson-Golabi-Behmel syndrome type 2 (SGBS2), and retinitis pigmentosa. Recently, OFD1 pathogenic variants have been implicated in primary ciliary dyskinesia (PCD), a disorder of the motile cilia with a phenotype that includes recurrent oto-sino-pulmonary infections, situs abnormalities, and decreased fertility. METHODS: We describe three male patients with PCD who were found to have hemizygous pathogenic variants in OFD1, further supporting that PCD is part of a clinical spectrum of OFD1-related disorders. In addition, we provide a review of the available clinical literature describing patients with OFD1 variants and highlight the phenotypic variability of OFD1-related disease. RESULTS: Some individuals with hemizygous OFD1 variants have PCD, either apparently isolated or in combination with other features of OFD1-related disorders. CONCLUSION: As clinicians consider the presence or absence of conditions allelic at OFD1, PCD should be considered part of the spectrum of OFD1-related disorders. Understanding the OFD1-related disease spectrum may allow for more focused genetic testing and more timely management of treatable sequelae.


Assuntos
Transtornos da Motilidade Ciliar/genética , Hemizigoto , Mutação com Perda de Função , Proteínas/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Doenças Cerebelares/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Hipotonia Muscular/genética , Retinose Pigmentar/genética
4.
Pediatr Pulmonol ; 53(11): 1565-1573, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30238669

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) and cri du chat syndrome (CdCS) are distinct disorders that can co-occur due to a common genetic locus on chromosome 5p. Chronic respiratory symptoms associated with PCD can occur in CdCS and are typically attributed to hypotonia, dysphagia, and aspiration. The prevalence of PCD among individuals with CdCS is not known. METHODS: An online survey assessing common features of PCD was distributed to members of the 5P Minus Society, a cri du chat patient advocacy group. Respondents who met criteria for elevated risk of PCD (at least 3 symptoms or other features highly suggestive of PCD) were offered PCD genetic testing. RESULTS: For the 123 respondents (median age 10.1 years with IQR 5.5-17.3 years; from 33 U.S. states and 10 other countries) chronic respiratory symptoms associated with PCD were prevalent, including unexplained neonatal respiratory distress, year-round nasal congestion beginning in infancy, and year-round, wet cough beginning in infancy in 35%, 32%, and 20% of respondents, respectively. Fifteen respondents (12%) met criteria for elevated risk for PCD and completed genetic analysis; however, none were diagnostic for PCD. A PCD clinical center evaluated an additional subject with CdCS who met criteria for likely PCD and had negative genetics, but had diagnostic electron microscopy of the respiratory cilia (missing outer dynein arms). CONCLUSION: Clinicians should be aware of the genetic connection between CdCS and PCD. Non-informative genetic testing does not rule out PCD. CdCS patients with chronic respiratory symptoms may benefit from referral to specialized PCD diagnostic centers.


Assuntos
Transtornos da Motilidade Ciliar/epidemiologia , Síndrome de Cri-du-Chat/epidemiologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Comorbidade , Síndrome de Cri-du-Chat/genética , Feminino , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Prevalência
5.
Am J Hum Genet ; 96(2): 318-28, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25640674

RESUMO

Variation in cystic fibrosis (CF) phenotypes, including lung disease severity, age of onset of persistent Pseudomonas aeruginosa (P. aeruginosa) lung infection, and presence of meconium ileus (MI), has been partially explained by genome-wide association studies (GWASs). It is not expected that GWASs alone are sufficiently powered to uncover all heritable traits associated with CF phenotypic diversity. Therefore, we utilized gene expression association from lymphoblastoid cells lines from 754 p.Phe508del CF-affected homozygous individuals to identify genes and pathways. LPAR6, a G protein coupled receptor, associated with lung disease severity (false discovery rate q value = 0.0006). Additional pathway analyses, utilizing a stringent permutation-based approach, identified unique signals for all three phenotypes. Pathways associated with lung disease severity were annotated in three broad categories: (1) endomembrane function, containing p.Phe508del processing genes, providing evidence of the importance of p.Phe508del processing to explain lung phenotype variation; (2) HLA class I genes, extending previous GWAS findings in the HLA region; and (3) endoplasmic reticulum stress response genes. Expression pathways associated with lung disease were concordant for some endosome and HLA pathways, with pathways identified using GWAS associations from 1,978 CF-affected individuals. Pathways associated with age of onset of persistent P. aeruginosa infection were enriched for HLA class II genes, and those associated with MI were related to oxidative phosphorylation. Formal testing demonstrated that genes showing differential expression associated with lung disease severity were enriched for heritable genetic variation and expression quantitative traits. Gene expression provided a powerful tool to identify unrecognized heritable variation, complementing ongoing GWASs in this rare disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Genes MHC Classe I/genética , Variação Genética , Fenótipo , Receptores de Ácidos Lisofosfatídicos/genética , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Humanos , Modelos Lineares , Deleção de Sequência/genética
6.
Chest ; 146(5): 1176-1186, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24577564

RESUMO

BACKGROUND: Motile cilia dysfunction causes primary ciliary dyskinesia (PCD), situs inversus totalis (SI), and a spectrum of laterality defects, yet the prevalence of laterality defects other than SI in PCD has not been prospectively studied. METHODS: In this prospective study, participants with suspected PCD were referred to our multisite consortium. We measured nasal nitric oxide (nNO) level, examined cilia with electron microscopy, and analyzed PCD-causing gene mutations. Situs was classified as (1) situs solitus (SS), (2) SI, or (3) situs ambiguus (SA), including heterotaxy. Participants with hallmark electron microscopic defects, biallelic gene mutations, or both were considered to have classic PCD. RESULTS: Of 767 participants (median age, 8.1 years, range, 0.1-58 years), classic PCD was defined in 305, including 143 (46.9%), 125 (41.0%), and 37 (12.1%) with SS, SI, and SA, respectively. A spectrum of laterality defects was identified with classic PCD, including 2.6% and 2.3% with SA plus complex or simple cardiac defects, respectively; 4.6% with SA but no cardiac defect; and 2.6% with an isolated possible laterality defect. Participants with SA and classic PCD had a higher prevalence of PCD-associated respiratory symptoms vs SA control participants (year-round wet cough, P < .001; year-round nasal congestion, P = .015; neonatal respiratory distress, P = .009; digital clubbing, P = .021) and lower nNO levels (median, 12 nL/min vs 252 nL/min; P < .001). CONCLUSIONS: At least 12.1% of patients with classic PCD have SA and laterality defects ranging from classic heterotaxy to subtle laterality defects. Specific clinical features of PCD and low nNO levels help to identify PCD in patients with laterality defects. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00323167; URL: www.clinicaltrials.gov.


Assuntos
Cílios/ultraestrutura , DNA/análise , Síndrome de Kartagener/diagnóstico , Mutação , Adolescente , Adulto , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Síndrome de Kartagener/epidemiologia , Síndrome de Kartagener/genética , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Estados Unidos/epidemiologia , Adulto Jovem
7.
Am J Respir Crit Care Med ; 189(6): 707-17, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24568568

RESUMO

RATIONALE: Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. OBJECTIVES: To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. METHODS: Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. MEASUREMENTS AND MAIN RESULTS: We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. CONCLUSIONS: The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Kartagener/genética , Mutação , Adolescente , Adulto , Criança , Cílios/fisiologia , Análise Mutacional de DNA , Exoma , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Testes Genéticos , Homozigoto , Humanos , Síndrome de Kartagener/fisiopatologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/fisiologia , Análise de Sequência de DNA , Adulto Jovem
8.
Am J Hum Genet ; 93(4): 711-20, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24055112

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


Assuntos
Antígenos de Superfície/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Dineínas/genética , Proteínas de Ligação ao GTP/genética , Síndrome de Kartagener/genética , Mutação/genética , Adolescente , Adulto , Animais , Axonema/genética , Criança , Pré-Escolar , Citoplasma/genética , Células Epiteliais/metabolismo , Exoma , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem , Peixe-Zebra
9.
Am J Hum Genet ; 93(2): 336-45, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23891469

RESUMO

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


Assuntos
Cílios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Sistema Respiratório/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Exoma , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Linhagem , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Ratos , Sistema Respiratório/patologia , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Nat Genet ; 45(9): 995-1003, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872636

RESUMO

DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).


Assuntos
Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Cílios/ultraestrutura , Modelos Animais de Doenças , Epêndima/metabolismo , Epêndima/patologia , Técnicas de Silenciamento de Genes , Ordem dos Genes , Marcação de Genes , Humanos , Espaço Intracelular/metabolismo , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Peixe-Zebra
11.
Hum Mutat ; 34(3): 462-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255504

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by cilia and sperm dysmotility. About 12% of cases show perturbed 9+2 microtubule cilia structure and inner dynein arm (IDA) loss, historically termed "radial spoke defect." We sequenced CCDC39 and CCDC40 in 54 "radial spoke defect" families, as these are the two genes identified so far to cause this defect. We discovered biallelic mutations in a remarkable 69% (37/54) of families, including identification of 25 (19 novel) mutant alleles (12 in CCDC39 and 13 in CCDC40). All the mutations were nonsense, splice, and frameshift predicting early protein truncation, which suggests this defect is caused by "null" alleles conferring complete protein loss. Most families (73%; 27/37) had homozygous mutations, including families from outbred populations. A major putative hotspot mutation was identified, CCDC40 c.248delC, as well as several other possible hotspot mutations. Together, these findings highlight the key role of CCDC39 and CCDC40 in PCD with axonemal disorganization and IDA loss, and these genes represent major candidates for genetic testing in families affected by this ciliary phenotype. We show that radial spoke structures are largely intact in these patients and propose this ciliary ultrastructural abnormality be referred to as "IDA and microtubular disorganisation defect," rather than "radial spoke defect."


Assuntos
Axonema/genética , Dineínas/genética , Síndrome de Kartagener/genética , Mutação , Proteínas/genética , Alelos , Axonema/patologia , Cílios/genética , Cílios/patologia , Proteínas do Citoesqueleto/genética , Exoma , Feminino , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...