Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20240866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808444

RESUMO

Patterns of habitat use directly influence a species' fitness, yet for many species an individual's age can influence patterns of habitat use. However, in tropical rainforests, which host the greatest terrestrial species diversity, little is known about how age classes of different species use different adjacent habitats of varying quality. We use long-term mist net data from the Amazon rainforest to assess patterns of habitat use among adult, adolescent (teenage) and young understory birds in forest fragments, primary and secondary forest at the Biological Dynamics of Forest Fragments Project in Brazil. Insectivore adults were most common in primary forest, adolescents were equally likely in primary and secondary forest, and all ages were the least common in forest fragments. In contrast to insectivores, frugivores and omnivores showed no differences among all three habitat types. Our results illustrate potential ideal despotic distributions among breeding populations of some guilds of understory birds where adult insectivores may competitively exclude adolescent individuals from primary forest. Secondary forest recovery appears to hold promise as a breeding habitat for frugivore and omnivore species but only as a pre-breeding habitat for insectivores, but as the forest ages, the demographic structure of bird populations should match that of primary forest.


Assuntos
Aves , Ecossistema , Floresta Úmida , Animais , Aves/fisiologia , Brasil , Fatores Etários , Comportamento Alimentar
2.
Proc Biol Sci ; 289(1981): 20221123, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975441

RESUMO

Recent long-term studies in protected areas have revealed the loss of biodiversity, yet the ramifications for ecosystem health and resilience remain unknown. Here, we investigate how the loss of understory birds, in the lowest stratum of the forest, affects avian biomass and functional diversity in the Amazon rainforest. Across approximately 30 years in the Biological Dynamics of Forest Fragments Project, we used a historical baseline of avian communities to contrast the avian communities in today's primary forest with those in modern disturbed habitat. We found that in primary rainforest, the reduced abundance of insectivorous species led to reduced functional diversity, but no reduction of biomass, indicating that species with similar functional traits are less likely to coexist in modern primary forests. Because today's forests contain fewer functionally redundant species-those with similar traits-we argue that avian communities in modern primary Amazonian rainforests are less resilient, which may ultimately disrupt the ecosystem in dynamic and unforeseen ways.


Assuntos
Biodiversidade , Biomassa , Floresta Úmida , Animais , Aves , Ecossistema
3.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199922

RESUMO

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Evolução Biológica , Humanos , Filogenia
4.
Sci Adv ; 7(46): eabk1743, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767440

RESUMO

Warming from climate change is expected to reduce body size of endotherms, but studies from temperate systems have produced equivocal results. Over four decades, we collected morphometric data on a nonmigratory understory bird community within Amazonian primary rainforest that is experiencing increasingly extreme climate. All 77 species showed lower mean mass since the early 1980s­nearly half with 95% confidence. A third of species concomitantly increased wing length, driving a decrease in mass:wing ratio for 69% of species. Seasonal precipitation patterns were generally better than temperature at explaining morphological variation. Short-term climatic conditions affected all metrics, but time trends in wing and mass:wing remained robust even after controlling for annual seasonal conditions. We attribute these results to pressures to increase resource economy under warming. Both seasonal and long-term morphological shifts suggest response to climate change and highlight its pervasive consequences, even in the heart of the world's largest rainforest.

5.
Ecol Lett ; 24(2): 186-195, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33103837

RESUMO

How are rainforest birds faring in the Anthropocene? We use bird captures spanning > 35 years from 55 sites within a vast area of intact Amazonian rainforest to reveal reduced abundance of terrestrial and near-ground insectivores in the absence of deforestation, edge effects or other direct anthropogenic landscape change. Because undisturbed forest includes far fewer terrestrial and near-ground insectivores than it did historically, today's fragments and second growth are more impoverished than shown by comparisons with modern 'control' sites. Any goals for bird community recovery in Amazonian second growth should recognise that a modern bird community will inevitably differ from a baseline from > 35 years ago. Abundance patterns driven by landscape change may be the most conspicuous manifestation of human activity, but biodiversity declines in undisturbed forest represent hidden losses, possibly driven by climate change, that may be pervasive in intact Amazonian forests and other systems considered to be undisturbed.


Assuntos
Conservação dos Recursos Naturais , Floresta Úmida , Animais , Biodiversidade , Aves , Florestas , Humanos , Árvores
6.
Ecol Evol ; 10(17): 9223-9239, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953057

RESUMO

Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life-history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life-history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life-history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life-history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two-step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life-history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration.

7.
Ecol Evol ; 9(8): 4431-4442, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031917

RESUMO

Assessment and preservation of biodiversity has been a central theme of conservation biology since the discipline's inception. However, when diversity estimates are based purely on measures of presence-absence, or even abundance, they do not directly assess in what way focal habitats support the life history needs of individual species making up biological communities. Here, we move beyond naïve measures of occurrence and introduce the concept of "informed diversity" indices which scale estimates of avian species richness and community assemblage by two critical phases of their life cycle: breeding and molt. We tested the validity of the "informed diversity" concept using bird capture data from multiple locations in northern California and southern Oregon to examine patterns of species richness among breeding, molting, and naïve (based solely on occurrence) bird communities at the landscape and local scales using linear regression, community similarity indices, and a Detrended Correspondence Analysis (DCA). At the landscape scale, we found a striking pattern of increased species richness for breeding, molting, and naïve bird communities further inland and at higher elevations throughout the study area. At the local scale, we found that some sites with species-rich naïve communities were in fact species-poor when informed by breeding status, indicating that naïve richness may mask more biologically meaningful patterns of diversity. We suggest that land managers use informed diversity estimates instead of naïve measures of diversity to identify ecologically valuable wildlife habitat.

8.
PeerJ ; 6: e5881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30595974

RESUMO

Birds found outside their typical range, or vagrants, have fascinated naturalists for decades. Despite broad interest in vagrancy, few attempts have been made to statistically examine the explanatory variables potentially responsible for the phenomenon. In this study, we used multiple linear regression to model the occurrence of 28 rare warbler species (family Parulidae) in autumn in northern California and southern Oregon as a function of migration distance, continental population size, distance, and bearing to both closest breeding population and breeding population center. In addition to our predictive model, we used capture data from the California coast to 300 km inland to examine relationships between the presence of vagrant warblers, regional warbler species richness and age class distribution. Our study yielded three important results: (1) vagrancy is strongly correlated with larger North American population size; (2) vagrants are more common at some coastal sites; and (3) where young birds are over-represented, vagrants tend to occur-such as on the coast and at far inland sites. Of the many explanations of rare and vagrant individuals, we feel that the most likely is that these birds represent the ends of the distributions of a normal curve of migration direction, bringing some few migrants to locations out of their normal migratory range as vagrants. We also examine the underrepresented species that, according to our model, are overdue for being recorded in our study area.

9.
Ecology ; 98(11): 2885-2894, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28779523

RESUMO

Changes in climate can indirectly regulate populations at higher trophic levels by influencing the availability of food resources in the lower reaches of the food web. As such, species that rely on fruit and nectar food resources may be particularly sensitive to these bottom-up perturbations due to the strength of their trophic linkages with climatically-influenced plants. To measure the influence of climatically-mediated, bottom-up processes, we used climate, bird capture, bird count, and plant phenology data from the Big Island of Hawaii to construct a series of structural equation and abundance models. Our results suggest that fruit and nectar-eating birds arrange life cycle events around climatically-influenced food resources, while some of these same food resources also influence seasonal patterns of abundance. This trend was particularly strong for two native nectarivores, 'I'iwi and 'Apapane, where we found that the dissimilar timing of molting and breeding activity was associated with peak abundance of the two most common flowers at our study site which, in turn, were each driven by dissimilar climatic cues. Given the rapidly changing Hawaiian climate, we suggest that determining behavioral plasticity, or evolutionary capacity of birds to mitigate changes in climatically-influenced food resources, should be recognized as a future research priority.


Assuntos
Aves/fisiologia , Animais , Demografia , Cadeia Alimentar , Havaí , Plantas , Estações do Ano
10.
Oecologia ; 178(3): 715-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25687831

RESUMO

The effects of habitat alteration and climatic instability have resulted in the loss of bird populations throughout the globe. Tropical birds in particular may be sensitive to climate and habitat change because of their niche specialization, often sedentary nature, and unique life-cycle phenologies. Despite the potential influence of habitat and climatic interactions on tropical birds, we lack comparisons of avian demographics from variably aged forests subject to different climatic phenomena. Here, we measured relationships between forest type and climatic perturbations on White-collared Manakin (Manacus candei), a frugivorous tropical bird, by using 12 years of capture data in young and mature forests in northeastern Costa Rica. We used Cormack-Jolly-Seber models and an analysis of deviance to contrast the influence of the El Niño Southern Oscillation (ENSO) on manakin survival. We found that ENSO had little effect on manakin survival in mature forests. Conversely, in young forests, ENSO explained 79% of the variation where dry El Niño events negatively influenced manikin survival. We believe mature forest mitigated negative effects of dry El Niño periods and can serve as refugia for some species by buffering birds from climatic instability. Our results represent the first published documentation that ENSO influences the survival of a resident Neotropic landbird.


Assuntos
Ecossistema , El Niño Oscilação Sul , Florestas , Passeriformes/fisiologia , Animais , Costa Rica , Humanos , Modelos Teóricos , Análise de Componente Principal , Clima Tropical
11.
PLoS One ; 9(1): e86221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489701

RESUMO

Nearctic-neotropic migrant birds need to replenish energy reserves during stopover periods to successfully complete their semiannual movements. In this study we used linear models to examine the habitat use of 11 migrant species in northeastern Costa Rica to better understand the influence of food and structural resources on the presence of birds during stopover periods. Our models indicated that frugivorous migrants primarily used food abundance, while insectivorous migrants chiefly used vegetation structure as cues for habitat use during stopover. In addition to habitat use models, we documented fruiting plant phenology and found a general relationship between migrant arrival and the timing of ripe fruit availability. Our results suggest that insectivorous migrants probably rely on structural features when using habitat because it may be inherently difficult to assess cryptic-arthropod availability during a short period of time in a novel habitat, such as stopover periods.


Assuntos
Aves/fisiologia , Ecossistema , Migração Animal/fisiologia , Animais , Costa Rica , Estações do Ano
12.
Proc Biol Sci ; 281(1776): 20132599, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24335983

RESUMO

Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.


Assuntos
Distribuição Animal/fisiologia , Comportamento Animal/fisiologia , Aves/fisiologia , Ecossistema , Meio Ambiente , Modelos Biológicos , Animais , Brasil , Especificidade da Espécie , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...