Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(6): 1681-1689, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34978868

RESUMO

The hop cultivar 'Cascade' possesses partial resistance to powdery mildew (Podosphaera macularis) that can be overcome by recently emerged, virulent isolates of the fungus. Given that hop is a long-lived perennial and that brewers still demand Cascade, there is a need to better understand factors that influence the development of powdery mildew on this cultivar. Growth chamber experiments were conducted to quantify the effect of constant, transient, and fluctuating temperature on Cascade before, concurrent to, and after inoculation as contrasted with another powdery mildew-susceptible cultivar, 'Symphony'. Exposure of plants to supraoptimal temperature (26 and 32°C) before inoculation led to more rapid onset of ontogenic resistance in intermediately aged leaves in Cascade as compared with Symphony. Cascade was overall less susceptible to powdery mildew when exposed to constant temperature ranging from 18 to 32°C directly after inoculation. However, cultivar also interacted with temperature such that proportionately fewer and smaller colonies developed on Cascade than Symphony at supraoptimal yet permissive temperatures for disease. When plants were inoculated and then exposed to high temperature, colonies became progressively more tolerant to temperatures of 26 to 30°C with increasing time from inoculation to exposure, as moderated by cultivar, the specific temperature, and their interaction. Subjecting plants to simulated diurnal temperature regimes at the time of inoculation or 24 h later indicated Cascade and Symphony responded proportionately similarly on days predicted to be marginally unfavorable or marginally favorable for powdery mildew, although Cascade was quantitatively less susceptible than Symphony. In sum, this research indicates that Cascade is overall less susceptible to powdery mildew than Symphony, and supraoptimal temperature before, concurrent to, or after infection may interact differentially to moderate disease risk in Cascade. Therefore, cultivar-specific risk assessments for powdery mildew appear warranted.


Assuntos
Doenças das Plantas , Folhas de Planta , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Temperatura
2.
Plant Dis ; 106(4): 1244-1252, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34818909

RESUMO

Understanding of the physical mode of action of fungicides allows more efficient and effective application and can increase disease control. Greenhouse and field studies were conducted to explore the preinfection and postinfection duration and translocative properties of fungicides commonly used to control hop powdery mildew, caused by Podosphaera macularis. In greenhouse studies, applications made 24 h before inoculation were almost 100% effective at suppressing powdery mildew, regardless of the fungicide evaluated. However, percentage control of powdery mildew based on the number of pathogen colonies per leaf varied significantly between fungicides with increasing time from inoculation to application, ranging from 50 to 100% disease control depending on the fungicide. Fluopyram or fluopyram + trifloxystrobin was particularly efficacious, suppressing nearly all powdery mildew development independent of application timing. In translocation studies, fluopyram and flutriafol were the most effective treatments in each of two separate experiments, resulting in zones of inhibition of 1,036 and 246.3 mm2, respectively, on adaxial leaf surfaces when a single droplet of each fungicide was applied to the abaxial surface of leaves. In field experiments, all fungicide treatments provided nearly complete control of powdery mildew infection when applied before inoculation. Levels of disease control decreased with time depending on treatment, showing trends similar to those observed in greenhouse studies. In the 2017 field experiments, high levels of disease control (>75%) were observed at postinoculation time points for all treatments tested, whereas the same fungicides were more sensitive to application timing in a different year. Findings from this research indicate that differences in efficacy between fungicides are small when applications are made preventively, but postinfection activity and translaminar movement of certain fungicides may render some more effective depending on application coverage and preexisting infection.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Folhas de Planta
3.
Phytopathology ; 110(5): 1105-1116, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32091314

RESUMO

Powdery mildew, caused by Podosphaera macularis, is one of the most important diseases of hop. The disease was first reported in the Pacific Northwestern United States, the primary hop-growing region in this country, in the mid-1990s. More recently, the disease has reemerged in newly planted hopyards of the eastern United States, as hop production has expanded to meet demands of local craft brewers. The spread of strains virulent on previously resistant cultivars, the paucity of available fungicides, and the potential introduction of the MAT1-2 mating type to the western United States, all threaten sustainability of hop production. We sequenced the transcriptome of 104 isolates of P. macularis collected throughout the western United States, eastern United States, and Europe to quantify genetic diversity of pathogen populations and elucidate the possible origins of pathogen populations in the western United States. Discriminant analysis of principal components grouped isolates within three to five geographic populations, dependent on stringency of grouping criteria. Isolates from the western United States were phenotyped and categorized into one of three pathogenic races based on disease symptoms generated on differential cultivars. Western U.S. populations were clonal, irrespective of pathogenic race, and grouped with isolates originating from Europe. Isolates originating from wild hop plants in the eastern United States were genetically differentiated from all other populations, whereas isolates from cultivated hop plants in the eastern United States mostly grouped with isolates originating from the west, consistent with origins from nursery sources. Mating types of isolates originating from cultivated western and eastern U.S. hop plants were entirely MAT1-1. In contrast, a 1:1 ratio of MAT1-1 and MAT1-2 was observed with isolates sampled from wild plants or Europe. Within the western United States a set of highly differentiated loci were identified in P. macularis isolates associated with virulence to the powdery mildew R-gene R6. The weight of genetic and phenotypic evidence suggests a European origin of the P. macularis populations in the western United States, followed by spread of the pathogen from the western United States to re-emergent production regions in the eastern United States. Furthermore, R6 compatibility appears to have been selected from an extant isolate within the western United States. Greater emphasis on sanitation measures during propagation and quarantine policies should be considered to limit further spread of novel genotypes of the pathogen, both between and within production areas.


Assuntos
Ascomicetos , Fungicidas Industriais , Europa (Continente) , Noroeste dos Estados Unidos , Doenças das Plantas , Estados Unidos
4.
Plant Dis ; 102(7): 1316-1325, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673566

RESUMO

In the Pacific Northwestern United States, the hop powdery mildew fungus, Podosphaera macularis, survives overwintering periods in association with living host tissue because the ascigerious stage of the pathogen is not known to occur in this region. Field experiments were conducted over a 5-year period to describe the overwintering process associated with crown bud infection and persistence of P. macularis. Surface crown buds increased in abundance and size beginning in early July and continuing until mid-September. Buds of varying sizes remained susceptible to powdery mildew until late September to early October in each of 3 years of experiments, with susceptibility decreasing substantially thereafter. Potted plants were inoculated sequentially during early summer to autumn, then evaluated in the following year for development of shoots colonized by the powdery mildew fungus (termed flag shoots) due to bud perennation. Emergence of flag shoots was asynchronous and associated with shoot emergence and elongation. Flag shoots emerged over a protracted period from late February to early June, year dependent. In all 4 years of experiments, some infected buds broke and produced flag shoots after chemical desiccation of shoots in spring, a common horticultural practice in hop production conducted to set training timing and eliminate initial inoculum. Flag shoots were most numerous when plants were inoculated with P. macularis in early summer and, consequently, when powdery mildew was present throughout the entire period of crown bud development. The number of flag shoots produced was reduced from 6.8- to 46.6-fold when comparing the latest versus earliest inoculation dates. However, all inoculation timings yielded flag shoots at some level, suggesting that bud infection that occurs over an extended period of time in the previous season may allow the fungus to perennate. In studies in two commercial hop yards in Washington State, fungicide applications made after harvest reduced the level of powdery mildew on leaves in the current year but did not significantly reduce flag shoots in the following year. Given that bud infection occurred over a 10-week period, flag shoots developed even when plants were exposed to inoculum in October and some flag shoots survived chemical pruning practices, management efforts seem best directed to both preventative measures to reduce the likelihood of bud infection and remedial practices to physically eliminate infected crown buds in the ensuing year.


Assuntos
Ascomicetos/fisiologia , Flores/microbiologia , Meristema/microbiologia , Doenças das Plantas/microbiologia , Estações do Ano , Fungicidas Industriais/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Brotos de Planta/microbiologia , Fatores de Tempo , Washington
5.
Plant Dis ; 101(6): 874-881, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682923

RESUMO

The hop cultivar Cascade has been grown in the Pacific Northwestern U.S. and elsewhere with minimal input for management of powdery mildew (Podosphaera macularis) for nearly 15 years due to the putatively quantitative resistance in this cultivar. While partial resistance is generally thought to be more durable than qualitative resistance, in 2012, powdery mildew was reported on Cascade in Washington State. Field surveys conducted during 2013 to 2016 indicated increasing prevalence of powdery mildew on Cascade, as well as an increasing number of fungicide applications applied to this cultivar in Washington State. Nearly all isolates of P. macularis tested were able to infect Cascade in laboratory inoculations. However, the greatest number of colonies, most conidia produced, and the shortest latent period was only observed with isolates derived originally from Cascade, as compared with other isolates derived from other cultivars. Further, the enhanced aggressiveness of these isolates was only manifested on Cascade and not six other susceptible cultivars, further indicating a specific adaptation to Cascade by the isolates. There was no evidence of a known major R-gene in Cascade, as seven isolates of P. macularis with contrasting virulence all infected Cascade. Among 158 isolates obtained from hop yards planted to Cascade, only two (1.3%) were able to infect the cultivar Nugget, which possesses the resistance factor termed R6, indicating that isolates of P. macularis virulent on Nugget are largely distinct from those adapted to Cascade. Further, race characterization indicated Cascade-adapted isolates of P. macularis were able to overcome R-genes Rb, R3, and R5, but not other known R-genes. Therefore, multiple R-genes and other sources of partial resistance are expected to provide resistance to Cascade-adapted strains of the fungus. Given the plasticity of the powdery mildew fungus, breeding strategies for powdery mildew need to consider the potential for adaptation to both qualitative and partial resistance in the host.

6.
Plant Dis ; 100(6): 1212-1221, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682268

RESUMO

Host resistance, both quantitative and qualitative, is the preferred long-term approach for disease management in many pathosystems, including powdery mildew of hop (Podosphaera macularis). In 2012, an epidemic of powdery mildew occurred in Washington and Idaho on previously resistant cultivars whose resistance was putatively based on the gene designated R6. In 2013, isolates capable of causing severe disease on cultivars with R6-based resistance were confirmed in Oregon and became widespread during 2014. Surveys of commercial hop yards during 2012 to 2014 documented that powdery mildew is now widespread on cultivars possessing R6 resistance in Washington and Oregon, and the incidence of disease is progressively increasing. Pathogenic fitness, race, and mating type of R6-virulent isolates were compared with isolates of P. macularis lacking R6 virulence. All isolates were positive for the mating type idiomorph MAT1-1 and were able to overcome resistance genes Rb, R3, and R5 but not R1 or R2. In addition, R6-virulent isolates were shown to infect differential cultivars reported to possess the R6 gene and also the R4 gene, although R4 has not yet been broadly deployed in the United States. R6-virulent isolates were not detected from the eastern United States during 2012 to 2015. In growth chamber studies, R6-virulent isolates of P. macularis had a significantly longer latent period and produced fewer lesions on plants with R6 as compared with plants lacking R6, indicating a fitness cost to the fungus. R6-virulent isolates also produced fewer conidia when compared with isolates lacking R6 virulence, independent of whether the isolates were grown on a plant with or without R6. Thus, it is possible that the fitness cost of R6 virulence occurs regardless of host genotype. In field studies, powdery mildew was suppressed by at least 50% on plants possessing R6 as compared with those without R6 when coinoculated with R6-virulent and avirulent isolates. R6 virulence in P. macularis appears to be race specific and, at this time, imposes a measurable fitness penalty on the fungus. Resistance genes R1 and R2 appear to remain effective against R6-virulent isolates of P. macularis in the U.S. Pacific Northwest.

7.
PLoS One ; 10(3): e0120987, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811173

RESUMO

Knowledge of processes leading to crop damage is central to devising rational approaches to disease management. Multiple experiments established that infection of hop cones by Podosphaera macularis was most severe if inoculation occurred within 15 to 21 days after bloom. This period of infection was associated with the most pronounced reductions in alpha acids, cone color, and accelerated maturation of cones. Susceptibility of cones to powdery mildew decreased progressively after the transition from bloom to cone development, although complete immunity to the disease failed to develop. Maturation of cone tissues was associated with multiple significant affects on the pathogen manifested as reduced germination of conidia, diminished frequency of penetration of bracts, lengthening of the latent period, and decreased sporulation. Cones challenged with P. macularis in juvenile developmental stages also led to greater frequency of colonization by a complex of saprophytic, secondary fungi. Since no developmental stage of cones was immune to powdery mildew, the incidence of powdery mildew continued to increase over time and exceeded 86% by late summer. In field experiments with a moderately susceptible cultivar, the incidence of cones with powdery mildew was statistically similar when fungicide applications were made season-long or targeted only to the juvenile stages of cone development. These studies establish that partial ontogenic resistance develops in hop cones and may influence multiple phases of the infection process and pathogen reproduction. The results further reinforce the concept that the efficacy of a fungicide program may depend largely on timing of a small number of sprays during a relatively brief period of cone development. However in practice, targeting fungicide and other management tactics to periods of enhanced juvenile susceptibility may be complicated by a high degree of asynchrony in cone development and other factors that are situation-dependent.


Assuntos
Ascomicetos , Produtos Agrícolas/microbiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Fungicidas Industriais/farmacologia , Fenótipo , Folhas de Planta/microbiologia
8.
Plant Dis ; 99(6): 858-865, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30699537

RESUMO

Optimum timing and use of fungicides for disease control are improved by an understanding of the characteristics of fungicide physical mode of action. Greenhouse and field experiments were conducted to quantify and model the duration of pre- and postinfection activity of fungicides most commonly used for control of hop downy mildew (caused by Pseudoperonospora humuli). In greenhouse experiments, control of downy mildew on leaves was similar among fungicides tested when applied preventatively but varied depending on both the fungicide and the timing of application postinfection. Disease control decreased as applications of copper were made later after inoculation. In contrast, cymoxanil, trifloxystrobin, and dimethomorph reduced disease with similar efficacy when applied 48 h after inoculation compared with preventative applications of these fungicides. When fungicides were applied 72 h after inoculation, only dimethomorph reduced the sporulating leaf area similarly to preinoculation application timing. Adaxial chlorosis, necrosis, and water soaking of inoculated leaves, indicative of infection by P. humuli, were more severe when plants were treated with cymoxanil, trifloxystrobin, and dimethomorph 48 to 72 h after inoculation, even though sporulation was suppressed. Trifloxystrobin and dimethomorph applied 72 h after inoculation suppressed formation of sporangia on sporangiophores as compared with all other treatments. In field studies, dimethomorph, fosetyl-Al, and trifloxystrobin suppressed development of shoots with systemic downy mildew to the greatest extent when applied near the timing of inoculation, although the duration of preventative and postinfection activity varied among the fungicides. There was a small reduction in efficacy of disease control when fosetyl-Al was applied 6 to 7 days after inoculation as compared with protective applications. Trifloxystrobin had 4 to 5 days of preinfection activity and limited postinfection activity. Dimethomorph had the longest duration of protective activity. Percent disease control was reduced progressively with increasing time between inoculation and application of dimethomorph. These findings provide guidance to the use of fungicides when applications are timed with forecasted or post hoc disease hazard warnings, as well as guidance on tank-mixes of fungicides that may be suitable both for resistance management considerations and extending intervals between applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...