Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666175

RESUMO

Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here, we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.


Assuntos
Drosophila melanogaster/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Técnicas de Introdução de Genes , Imidazóis , Neurônios/fisiologia , Temperatura , Proteínas rab de Ligação ao GTP/deficiência
2.
Dev Cell ; 50(4): 447-461.e8, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353313

RESUMO

Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.


Assuntos
Proteínas de Drosophila/genética , Proteínas Ativadoras de GTPase/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurogênese/genética , Sinapses/genética , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Simulação por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Fosfoproteínas/genética , Pseudópodes/genética , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura
3.
J Comp Neurol ; 527(6): 1027-1038, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30444529

RESUMO

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Assuntos
Encéfalo/citologia , Gafanhotos/anatomia & histologia , Neurônios Eferentes/citologia , Octopamina , Tiramina , Animais , Encéfalo/fisiologia , Gânglios/citologia , Gânglios/fisiologia , Gafanhotos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Eferentes/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia
4.
Front Syst Neurosci ; 12: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615874

RESUMO

A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches ("synaptopods") but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in "synaptopods", the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).

5.
Curr Biol ; 28(7): 1027-1038.e4, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29551411

RESUMO

Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains. We show that different acidification-sensing cargo probes are sorted into distinct classes of degradative "hub" compartments for synaptic vesicle proteins and plasma membrane proteins at axon terminals. Sorting and degradation of the two cargoes in the separate hubs are molecularly distinct. Local sorting of synaptic vesicle proteins for degradation at the axon terminal is, surprisingly, Rab7 independent, whereas sorting of plasma membrane proteins is Rab7 dependent. The cathepsin-like protease CP1 is specific to synaptic vesicle hubs, and its delivery requires the vesicle SNARE neuronal synaptobrevin. Cargo separation only occurs at the axon terminal, whereas degradative compartments at the cell body are mixed. These data show that at least two local, molecularly distinct pathways sort membrane cargo for degradation specifically at the axon terminal, whereas degradation can occur both at the terminal and en route to the cell body.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Polaridade Celular , Células Cultivadas , Proteólise , Proteínas SNARE/metabolismo
6.
Sci Rep ; 8(1): 815, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339751

RESUMO

Jumonji (JmjC) domain proteins are known regulators of gene expression and chromatin organization by way of histone demethylation. Chromatin modification and remodeling provides a means to modulate the activity of large numbers of genes, but the importance of this class of predicted histone-modifying enzymes for different aspects of post-developmental processes remains poorly understood. Here we test the function of all 11 non-lethal members in the regulation of circadian rhythms and sleep. We find loss of every Drosophila JmjC gene affects different aspects of circadian behavior and sleep in a specific manner. Together these findings suggest that the majority of JmjC proteins function as regulators of behavior, rather than controlling essential developmental programs.


Assuntos
Ritmo Circadiano , Drosophila/fisiologia , Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Sono , Animais , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
7.
J Comp Neurol ; 512(4): 433-52, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19025988

RESUMO

Octopamine and its precursor tyramine are biogenic amines that are found ubiquitously in insects, playing independent but opposite neuromodulatory roles in a wide spectrum of behaviors, ranging from locomotion and aggression to learning and memory. We used recently available antibodies to octopamine and tyramine to label the distribution of immunoreactive profiles in the brain and ventral nerve cord of the locust. In the brain and all ventral cord ganglia all known octopaminergic neurons were labeled with both the tyramine and octopamine antisera. In the brain the subesophageal ganglion and all fused abdominal ganglia we found somata that were only labeled by the tyramine antibody. Some prominent architectural features of the brain, like the protocerebral bridge, the central body, and associated neuropils, also contain intensely labeled tyramine-immunoreactive fibers. In addition, tyraminergic fibers occur in all ganglia of the ventral cord. For known octopaminergic neurons of the thoracic ganglia, octopamine-immunoreactivity was confined to the cell body and to the varicosities or boutons, whereas fiber processes always expressed tyramine-immunoreactivity. The distribution of the tyramine and octopamine content within these neurons turned out to be dependent on how the animal was handled before fixation for immunocytochemistry. We conclude that tyramine is an independent transmitter in locusts, and that in octopaminergic neurons the ratio between octopamine and its precursor tyramine is highly dynamic.


Assuntos
Gafanhotos , Neurotransmissores/metabolismo , Octopamina/metabolismo , Tiramina/metabolismo , Animais , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Gafanhotos/anatomia & histologia , Gafanhotos/metabolismo , Imuno-Histoquímica , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/química , Octopamina/química , Estresse Fisiológico , Tiramina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...