Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Schizophrenia (Heidelb) ; 8(1): 96, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376358

RESUMO

ATP functions as a neurotransmitter, acting on the ubiquitously expressed family of purinergic P2 receptors. In schizophrenia (SCZ), the pathways that modulate extracellular ATP and its catabolism to adenosine are dysregulated. However, the effects of altered ATP availability on P2 receptor expression in the brain in SCZ have not been assessed. We assayed P2 receptor mRNA and protein expression in the DLPFC and ACC in subjects diagnosed with SCZ and matched, non-psychiatrically ill controls (n = 20-22/group). P2RX7, P2RX4 and male P2RX5 mRNA expression were significantly increased (p < 0.05) in the DLPFC in SCZ. Expression of P2RX7 protein isoform was also significantly increased (p < 0.05) in the DLPFC in SCZ. Significant increases in P2RX4 and male P2RX5 mRNA expression may be associated with antipsychotic medication effects. We found that P2RX4 and P2RX7 mRNA are significantly correlated with the inflammatory marker SERPINA3, and may suggest an association between upregulated P2XR and neuroinflammation in SCZ. These findings lend support for brain-region dependent dysregulation of the purinergic system in SCZ.

2.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291180

RESUMO

Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and "look-up" studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by "look-up" studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically.


Assuntos
Antipsicóticos , Transtornos Mentais , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Astrócitos , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Antidepressivos/uso terapêutico
3.
World J Biol Psychiatry ; 22(6): 446-455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914678

RESUMO

OBJECTIVES: Recently, the presence of a complete five subunit Kinase, Endopeptidase and Other Proteins of small Size (KEOPS) complex was confirmed in humans. The highly conserved KEOPS protein complex has established roles in tRNA modification, protein translation and telomere homeostasis in yeast, but little is known about KEOPS mRNA expression and function in human brain and disease. Here, we characterise KEOPS expression in post-mortem tissue from subjects diagnosed with major depression (MDD) and schizophrenia and assess whether KEOPS is associated with telomere length dysregulation in neuropsychiatric disorders. METHODS: We assessed mRNA expression of KEOPS complex subunits TP53RK, TPRKB, GON7, LAGE3, OSGEP, and OSGEP mitochondrial ortholog OSGEPL1 in the dorsolateral prefrontal cortex (DLPFC) of subjects with MDD, schizophrenia and matched non-psychiatrically ill controls (n = 20 per group) using qPCR. We conducted bioinformatic analysis using Kaleidoscope, data mining post-mortem transcriptomic datasets to characterise KEOPS expression in human brain. Finally, we assayed relative telomere length in the DLPFC using a qPCR-based assay and carried out correlation analysis with KEOPS subunit mRNA expression to determine if the KEOPS complex is associated with telomere length dysregulation in neuropsychiatric disorders. RESULTS: There were no significant changes in KEOPS mRNA expression in the DLPFC in MDD or schizophrenia compared to non-psychiatrically ill controls. Relative telomere length was not significantly altered in MDD or schizophrenia, nor was there an association between relative telomere length and KEOPS subunit gene expression in these subjects. CONCLUSIONS: This study is the first to describe KEOPS complex expression in post-mortem brain and neuropsychiatric disorders. KEOPS subunit mRNA expression is not significantly altered in the DLPFC in MDD or schizophrenia. Unlike in yeast, the KEOPS complex does not appear to play a role in telomere length regulation in humans or in neuropsychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Depressão , Transtorno Depressivo Maior/genética , Endopeptidases , Humanos , Córtex Pré-Frontal , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...