Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(12): 6350-6362, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32662517

RESUMO

Synaptic dysfunction is hypothesized to be one of the earliest brain changes in Alzheimer's disease, leading to "hyperexcitability" in neuronal circuits. In this study, we evaluated a novel hyperexcitation indicator (HI) for each brain region using a hybrid resting-state structural connectome to probe connectome-level excitation-inhibition balance in cognitively intact middle-aged apolipoprotein E (APOE) ε4 carriers with noncarriers (16 male/22 female in each group). Regression with three-way interactions (sex, age, and APOE-ε4 carrier status) to assess the effect of APOE-ε4 on excitation-inhibition balance within each sex and across an age range of 40-60 years yielded a significant shift toward higher HI in female carriers compared with noncarriers (beginning at 50 years). Hyperexcitation was insignificant in the male group. Further, in female carriers the degree of hyperexcitation exhibited significant positive correlation with working memory performance (evaluated via a virtual Morris Water task) in three regions: the left pars triangularis, left hippocampus, and left isthmus of cingulate gyrus. Increased excitation of memory-related circuits may be evidence of compensatory recruitment of neuronal resources for memory-focused activities. In sum, our results are consistent with known Alzheimer's disease sex differences; in that female APOE-ε4 carriers have globally disrupted excitation-inhibition balance that may confer greater vulnerability to disease neuropathology.


Assuntos
Apolipoproteína E4/genética , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Excitabilidade Cortical , Adulto , Conectoma , Excitabilidade Cortical/genética , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia
2.
Brain Inform ; 5(2): 7, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30022317

RESUMO

The Nash embedding theorem demonstrates that any compact manifold can be isometrically embedded in a Euclidean space. Assuming the complex brain states form a high-dimensional manifold in a topological space, we propose a manifold learning framework, termed Thought Chart, to reconstruct and visualize the manifold in a low-dimensional space. Furthermore, it serves as a data-driven approach to discover the underlying dynamics when the brain is engaged in a series of emotion and cognitive regulation tasks. EEG-based temporal dynamic functional connectomes are created based on 20 psychiatrically healthy participants' EEG recordings during resting state and an emotion regulation task. Graph dissimilarity space embedding was applied to all the dynamic EEG connectomes. In order to visualize the learned manifold in a lower dimensional space, local neighborhood information is reconstructed via k-nearest neighbor-based nonlinear dimensionality reduction (NDR) and epsilon distance-based NDR. We showed that two neighborhood constructing approaches of NDR embed the manifold in a two-dimensional space, which we named Thought Chart. In Thought Chart, different task conditions represent distinct trajectories. Properties such as the distribution or average length in the 2-D space may serve as useful parameters to explore the underlying cognitive load and emotion processing during the complex task. In sum, this framework is a novel data-driven approach to the learning and visualization of underlying neurophysiological dynamics of complex functional brain data.

3.
J Comp Neurol ; 525(15): 3251-3265, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28675490

RESUMO

Understanding the modularity of functional magnetic resonance imaging (fMRI)-derived brain networks or "connectomes" can inform the study of brain function organization. However, fMRI connectomes additionally involve negative edges, which may not be optimally accounted for by existing approaches to modularity that variably threshold, binarize, or arbitrarily weight these connections. Consequently, many existing Q maximization-based modularity algorithms yield variable modular structures. Here, we present an alternative complementary approach that exploits how frequent the blood-oxygen-level-dependent (BOLD) signal correlation between two nodes is negative. We validated this novel probability-based modularity approach on two independent publicly-available resting-state connectome data sets (the Human Connectome Project [HCP] and the 1,000 functional connectomes) and demonstrated that negative correlations alone are sufficient in understanding resting-state modularity. In fact, this approach (a) permits a dual formulation, leading to equivalent solutions regardless of whether one considers positive or negative edges; (b) is theoretically linked to the Ising model defined on the connectome, thus yielding modularity result that maximizes data likelihood. Additionally, we were able to detect novel and consistent sex differences in modularity in both data sets. As data sets like HCP become widely available for analysis by the neuroscience community at large, alternative and perhaps more advantageous computational tools to understand the neurobiological information of negative edges in fMRI connectomes are increasingly important.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Oxigênio/sangue , Descanso , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...