Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Biomech (Bristol, Avon) ; 68: 37-44, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31158588

RESUMO

BACKGROUND: A biomechanical model of the lumbosacral spinal unit between L1-S1 was developed to investigate the behavior of normal and select pathological states. Our aims were to generate predictive structural models for mechanical deformation including critical stresses in the spine components and to investigate the probability of subsequent lumbar spine fractures in the presence of unilateral spondylolysis. METHODS: A non-linear three-dimensional finite element pathology-free model of the L1-S1 lumbosacral unit was generated using patient-specific computerized tomography scans and calibrated by comparing it to experimental data of a range of motion modes consisting of flexion, extension, left and right lateral bending, and left and right axial rotation. Unilateral and bilateral pars defects were created on the isthmus of L5 to simulate spondylolysis. FINDINGS: Results showed that under flexion, left lateral bending and right axial rotation, stresses were higher on the contralateral L5 pars-interarticularis, whereas, no significant changes occurred on the left-right isthmus of the L2-L4 and S1. Significant changes in the range of motion compared to the pathology-free model were observed in bilateral spondylolysis not only adjacent to the pars defect area but also in other lumbar spine levels. INTERPRETATION: The proposed pathology-free lumbosacral unit model showed good correlation with experimental tests for all loading cases. In unilateral spondylolysis, a subsequent pars defect was observed within the same vertebra. The overall modeling approach can be used to study different pathological states.


Assuntos
Vértebras Lombares/fisiologia , Amplitude de Movimento Articular/fisiologia , Espondilólise/fisiopatologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Sacro/fisiologia , Tomografia Computadorizada por Raios X
3.
J Biomech Eng ; 141(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347039

RESUMO

The annulus fibrosus (AF) of the intervertebral disc (IVD) consists of a set of concentric layers composed of a primary circumferential collagen fibers arranged in an alternating oblique orientation. Moreover, there exists an additional secondary set of radial translamellar collagen fibers which connects the concentric layers, creating an interconnected fiber network. The aim of this study was to investigate the mechanical role of the radial fiber network. Toward that goal, a three-dimensional (3D) finite element model of the L3-L4 spinal segment was generated and calibrated to axial compression and pure moment loading. The AF model explicitly recognizes the two heterogeneous networks of fibers. The presence of radial fibers demonstrated a pronounced effect on the local disc responses under lateral bending, flexion, and extension modes. In these modes, the radial fibers were in a tensile state in the disc region that subjected to compression. In addition, the circumferential fibers, on the opposite side of the IVD, were also under tension. The local stress in the matrix was decreased in up to 9% in the radial fibers presence. This implies an active fiber network acting collectively to reduce the stresses and strains in the AF lamellae. Moreover, a reduction of 26.6% in the matrix sideways expansion was seen in the presence of the radial fibers near the neutral bending axis of the disc. The proposed biomechanical model provided a new insight into the mechanical role of the radial collagen fibers in the AF structure. This model can assist in the design of future IVD substitutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...