Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 476(2235): 20190762, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32269491

RESUMO

In this paper the dynamics of a submerged axi-symmetric wave energy converter are studied, through mathematical models and wave basin experiments. The device is disk-shaped and taut-moored via three inclined tethers which also act as a power take-off. We focus on parasitic yaw motion, which is excited parametrically due to coupling with heave. Assuming linear hydrodynamics throughout, but considering both linear and nonlinear tether geometry, governing equations are derived in 6 degrees of freedom (DOF). From the linearized equations, all motions, apart from yaw, are shown to be contributing to the overall power absorption. At higher orders, the yaw governing equation can be recast into a classical Mathieu equation (linear in yaw), or a nonlinear Mathieu equation with cubic damping and stiffness terms. The well-known stability diagram for the classical Mathieu equation allows prediction of onset/occurrence of yaw instability. From the nonlinear Mathieu equation, we develop an approximate analytical solution for the amplitude of the unstable motions. Comparison with regular wave experiments confirms the utility of both models for making relevant predictions. Additionally, irregular wave tests are analysed whereby yaw instability is successfully correlated to the amount of parametric excitation and linear damping. This study demonstrates the importance of considering all modes of motion in design, not just the power-producing ones. Our simplified 1 DOF yaw model provides fundamental understanding of the presence and severity of the instability. The methodology could be applied to other wave-activated devices.

2.
Proc Math Phys Eng Sci ; 475(2221): 20180459, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30760952

RESUMO

Wave energy converters and other offshore structures may exhibit instability, in which one mode of motion is excited parametrically by motion in another. Here, theoretical results for the transverse motion instability (large sway oscillations perpendicular to the incident wave direction) of a submerged wave energy converter buoy are compared to an extensive experimental dataset. The device is axi-symmetric (resembling a truncated vertical cylinder) and is taut-moored via a single tether. The system is approximately a damped elastic pendulum. Assuming linear hydrodynamics, but retaining nonlinear tether geometry, governing equations are derived in six degrees of freedom. The natural frequencies in surge/sway (the pendulum frequency), heave (the springing motion frequency) and pitch/roll are derived from the linearized equations. When terms of second order in the buoy motions are retained, the sway equation can be written as a Mathieu equation. Careful analysis of 80 regular wave tests reveals a good agreement with the predictions of sub-harmonic (period-doubling) sway instability using the Mathieu equation stability diagram. As wave energy converters operate in real seas, a large number of irregular wave runs is also analysed. The measurements broadly agree with a criterion (derived elsewhere) for determining the presence of the instability in irregular waves, which depends on the level of damping and the amount of parametric excitation at twice the natural frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...