Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 469(5-6): 669-680, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315005

RESUMO

Hypothermia-induced reduction of metabolic rate is accompanied by depression of both glomerular perfusion and filtration. The present study investigated whether these changes are linked to changes in renal autoregulation and nitric oxide (NO) signalling. During hypothermia, renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced and urine production was increased, and this was linked with reduced plasma cGMP levels and increased renal vascular resistance. Although stimulation of NO production decreased vascular resistance, blood pressure and urine flow, intravenous infusion of the NO precursor L-arginine or the NO donor sodium nitroprusside did not alter RBF or GFR. In contrast, inhibition of NO synthesis by Nw-nitro-L-arginine led to a further decline in both parameters. Functional renal autoregulation was apparent at both temperatures. Below the autoregulatory range, RBF in both cases increased in proportion to the perfusion ±pressure, although, the slope of the first ascending limb of the pressure-flow relationship was lower during hypothermia. The main difference was rather that the curves obtained during hypothermia levelled off already at a RBF of 3.9 ± 0.3 mL/min then remained stable throughout the autoregulatory pressure range, compared to 7.6 ± 0.3 mL/min during normothermia. This was found to be due to a threefold increase in, primarily, the afferent arteriolar resistance from 2.6 to 7.5 mmHg min mL-1. Infusion of sodium nitroprusside did not significantly affect RBF during hypothermia, although a small increase at pressures below the autoregulatory range was observed. In conclusion, cold-induced rise in renal vascular resistance results from afferent arteriolar vasoconstriction by the autoregulatory mechanism, setting RBF and GFR in proportion to the metabolic rate, which cannot be explained by reduced NO production alone.


Assuntos
Homeostase , Hipotermia/metabolismo , Rim/fisiologia , Óxido Nítrico/sangue , Animais , Taxa de Filtração Glomerular , Hipotermia/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Circulação Renal , Resistência Vascular
2.
Kidney Int ; 67(1): 227-36, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15610246

RESUMO

BACKGROUND: Nitric oxide is an important vasodilator released from endothelial cells by the calcium-dependent endothelial nitric oxide synthase (NOS). We considered it important to investigate how shear stress/perfusion pressure influenced endothelial cell calcium concentration, nitric oxide release, and autoregulation of the afferent arteriole, since this arteriole controls glomerular filtration rate (GFR) and renin release. METHODS: We used an isolated perfused juxtamedullary nephron preparation and measured calcium with Fura 2, nitric oxide with 4-amino-5 methylamino-2', 7'-difluorescein (DAF-FM) and diameter with an imaging system. A mathematical model was applied to calculate changes in nitric oxide concentration and shear stress/wall tension during perfusion with and without erythrocytes at perfusion pressures varying from 50 to 150 mm Hg. RESULT: Cell-free perfusion increased nitric oxide concentration and abolished autoregulation; addition of erythrocytes or l-arginine analog N-nitro-l-arginine methyl ester (L-NAME) decreased nitric oxide concentration and reinstated autoregulation. Elevated perfusion pressure/elevated shear stress increased nitric oxide release and surprisingly decreased the endothelial cell calcium concentration, with perfusion pressure increase from 50 to 150 mm Hg, using blood perfusion endothelial calcium concentration decreased from 186 +/- 39 to 76 +/- 25 nmol/L and with cell-free perfusion from 116 +/- 33 to 56 +/- 21 nmol/L. CONCLUSION: Nitric oxide scavenging by erythrocytes has a high impact on arteriolar nitric oxide concentration and autoregulatory response. Nitric oxide measurements in endothelial cells of the afferent arteriole showed that increased perfusion pressure/shear stress increased nitric oxide release, while simultaneously endothelial cell calcium concentration decreased, possibly indicating a feedback control of this calcium by nitric oxide release.


Assuntos
Cálcio/metabolismo , Néfrons/metabolismo , Óxido Nítrico/biossíntese , Animais , Arteríolas/anatomia & histologia , Arteríolas/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Retroalimentação , Homeostase , Técnicas In Vitro , Masculino , Modelos Biológicos , Néfrons/irrigação sanguínea , Néfrons/citologia , Perfusão , Pressão , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...