Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Glycoconj J ; 40(1): 47-67, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36522582

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.


Assuntos
Antineoplásicos , Morte Celular Autofágica , Dioclea , Glioma , Humanos , Dioclea/química , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 8/uso terapêutico , Lectinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Movimento Celular , Autofagia , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose
3.
Neurotox Res ; 40(1): 127-139, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35043379

RESUMO

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide-(PhSe)2-a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe)2 with those of RC513 (4,4'-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22. Although both (PhSe)2 and RC513 significantly mitigated MeHg- and tert-butylhydroperoxide (t-BuOOH)-cytotoxicity, the probucol analog exhibited superior protective effects, which were observed earlier and at lower concentrations compared to (PhSe)2. RC513 treatment (at either 0.5 µM or 2 µM) significantly increased glutathione peroxidase (GPx) activity, which has been reported to counteract MeHg-toxicity. (PhSe)2 was also able to increase GPx activity, but only at 2 µM. Although both compounds increased the Gpx1 transcripts at 6 h after treatments, only RC513 was able to increase mRNA levels of Prx2, Prx3, Prx5, and Txn2, which are also involved in peroxide detoxification. RC513 (at 2 µM) significantly increased GPx-1 protein expression in HT22 cells, although (PhSe)2 displayed a minor (nonsignificant) effect in this parameter. In agreement, RC513 induced a faster and superior capability to cope with exogenously-added peroxide (t-BuOOH). In summary, when compared to the prototypical organic diaryl diselenide [(PhSe)2], RC513 displayed superior protective properties against MeHg-toxicity in vitro; this was paralleled by a more pronounced upregulation of defenses related to detoxification of peroxides, which are well-known MeHg-derived intermediate oxidant species.


Assuntos
Compostos de Metilmercúrio , Compostos Organosselênicos , Derivados de Benzeno/farmacologia , Compostos de Metilmercúrio/toxicidade , Compostos Organosselênicos/farmacologia , Peróxidos , Probucol/farmacologia
4.
Eur Neuropsychopharmacol ; 57: 15-29, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008015

RESUMO

The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.1 mg/kg, i.p.) and guanosine (0.01 mg/kg, p.o.) caused a fast (1 h - 24 h), but not long-lasting (7 days) reduction in the immobility time in the tail suspension test. This behavioral effect was paralleled by a rapid (started in 1 h) and transient (back to baseline in 24 h) increase on BDNF, p-Akt (Ser473), p-GSK-3ß (Ser9), p-mTORC1 (Ser2448), p-p70S6K (Thr389) immunocontent in the hippocampus, but not in the prefrontal cortex. Conversely, ketamine plus guanosine increased PSD-95 and GluA1 immunocontent in the prefrontal cortex, but not the hippocampus after 1 h, whereas increased levels of these proteins in both brain structures were observed after 24 h, but these effects did not persist after 7 days. The combined administration of ketamine plus guanosine raised the dendritic spines density in the ventral hippocampal DG and prefrontal cortex after 24 h Rapamycin (0.2 nmol/site, i.c.v.) abrogated the antidepressant-like effect and pro-synaptogenic responses triggered by ketamine plus guanosine. These results indicate that guanosine may boost the antidepressant-like effect of ketamine for up to 24 h by a mTORC1-dependent mechanism.


Assuntos
Ketamina , Animais , Antidepressivos , Depressão/tratamento farmacológico , Depressão/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Guanosina/metabolismo , Guanosina/farmacologia , Hipocampo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais
5.
J Psychiatr Res ; 144: 118-128, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619490

RESUMO

Ketamine has emerged as a prophylactic agent against depressive-like behavior induced by stress. However, the possible pro-resilience effects of ketamine against inflammatory stressors-induced depressive-like behavior and the signaling pathways associated with this response remain to be determined. Therefore, this study investigated the ability of prophylactic ketamine administration to produce a pro-resilience effect against the depressive-like behavior induced by lipopolysaccharide (LPS - 0.83 mg/kg, i.p.) and tumor necrosis factor-alpha (TNF-α - 0.1 fg/site, i.c.v.) administration in mice. The possible contribution of the NLRP3 inflammasome-driven signaling pathway to this effect was evaluated in the ventral hippocampus. A single administration of ketamine (5 mg/kg, i.p.) given 1 week before the LPS or TNF-α administration prevented the depressive-like behavior induced by these inflammatory stressors in the tail suspension test (TST) and splash test (SPT). On the other hand, a lower dose of ketamine (1 mg/kg, i.p.) failed to produce a similar effect. The administration of LPS, but not TNF-α, increased the immunocontent of the microglial marker Iba-1 in the ventral hippocampus. LPS increased the immunocontent of all proteins related to NLRP3 signaling, namely ASC, NLRP3, TXNIP, cleaved caspase-1, and IL-1ß in this brain region, while TNF-α only increased ASC and NLRP3 immunocontent. Ketamine administered at the dose of 5 mg/kg, but not at 1 mg/kg, prevented the increase on the immunocontent of NLRP3 inflammasome complex components and regulators induced by LPS or TNF-α administration. Collectively, these findings suggest that ketamine elicits a pro-resilient phenotype against inflammatory stressors-induced depressive-like behavior, an effect associated with the suppression of the NLRP3 inflammasome-driven signaling pathway.


Assuntos
Ketamina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Ketamina/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Transdução de Sinais
6.
Artigo em Inglês | MEDLINE | ID: mdl-34089815

RESUMO

Ketamine exhibits rapid and sustained antidepressant responses, but its repeated use may cause adverse effects. Augmentation strategies have been postulated to be useful for the management/reduction of ketamine's dose and its adverse effects. Based on the studies that have suggested that ketamine and guanosine may share overlapping mechanisms of action, the present study investigated the antidepressant-like effect of subthreshold doses of ketamine and guanosine in mice subjected to repeated administration of corticosterone (CORT) and the role of mTORC1 signaling for this effect. The ability of the treatment with ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.) to counteract the depressive-like behavior induced by CORT (20 mg/kg, p.o., for 21 days) in mice, was paralleled with the prevention of the CORT-induced reduction on BDNF levels, Akt (Ser473) and GSK-3ß (Ser9) phosphorylation, and PSD-95, GluA1, and synapsin immunocontent in the hippocampus. No changes on mTORC1 and p70S6K immunocontent were found in the hippocampus and prefrontal cortex of any experimental group. No alterations on BDNF, Akt/GSK-3ß, mTORC1/p70S6K, and synaptic proteins were observed in the prefrontal cortex of mice. The antidepressant-like and pro-synaptogenic effects elicited by ketamine plus guanosine were abolished by the pretreatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTORC1 inhibitor). Our results showed that the combined administration of ketamine and guanosine at low doses counteracted CORT-induced depressive-like behavior and synaptogenic disturbances by activating mTORC1 signaling. This study supports the notion that the combined administration of guanosine and ketamine may be a useful therapeutic strategy for the management of MDD.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/efeitos adversos , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Guanosina/farmacologia , Ketamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Metab Brain Dis ; 36(4): 711-722, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528752

RESUMO

Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Proteína C-Reativa/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Fluoxetina/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína C-Reativa/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo
8.
Metab Brain Dis ; 36(2): 351-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211258

RESUMO

Amyloid beta (Aß), one of the main hallmarks of Alzheimer's Disease (AD), may stimulate pattern recognition receptors (PRR) such as the NLRP3 inflammasome, inducing a pro-inflammatory state in the brain that contributes to disease development. Physical exercise can have multiple beneficial effects on brain function, including anti-inflammatory and neuroprotective roles. The objective of this study was to investigate the prophylactic effect of moderate treadmill exercise for 4 weeks on inflammatory events related to NLRP3 signaling in the hippocampus of mice after intracerebroventricular Aß1-40 administration. Our results show that Aß1-40 administration (400 pmol/mouse, i.c.v.) significantly increased the immunocontent Iba-1 (a microglial reactivity marker), NLRP3, TXNIP, and caspase-1 in the hippocampus of mice. However, physical exercise prevented the hippocampal increase in Iba-1, TXNIP, and activation of the NLRP3 inflammasome pathway caused by Aß1-40. Moreover, physical exercise per se reduced the TXNIP and caspase-1 immunocontent in the hippocampus. No alterations were observed on the immunocontent of GFAP, ASC, and IL-1ß in the hippocampus after Aß1-40 and/or physical exercise. These results reinforce the role of NLRP3 inflammasome pathway in AD and point to physical exercise as a possible non-pharmacological strategy to prevent inflammatory events triggered by Aß1-40 in mice.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Hipocampo/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fragmentos de Peptídeos/farmacologia , Condicionamento Físico Animal/fisiologia , Doença de Alzheimer/metabolismo , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos
9.
Biochimie ; 180: 186-204, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33171216

RESUMO

Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.


Assuntos
Antineoplásicos/farmacologia , Caspase 8/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glioma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Polissacarídeos/metabolismo , Domínios Proteicos/fisiologia , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
10.
Behav Brain Res ; 393: 112791, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599000

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disease that is highly comorbid with depression. Gut dysfunction has been proposed as a possible risk factor for both clinical conditions. In the present study, we investigated the ability of treadmill exercise for 4 weeks (5 days/week, 40 min/day) to counteract amyloid ß1-40 peptide (Aß1-40)-induced depressive-like behavior, alterations in morphological parameters of the duodenum, and the abundance of Firmicutes and Bacteroidetes phyla. Aß1-40 administration (400 pmol/mouse, i.c.v.) increased immobility time in the tail suspension test (TST) and reduced time spent sniffing in the female urine sniffing test (FUST), indicating behavioral despair and impairment in reward-seeking behavior. These behavioral alterations, indicative of depressive-like behavior, were accompanied by reduced villus width in the duodenum. Moreover, photomicrographs obtained by transmission electron microscopy revealed abnormal epithelial microvilli in the duodenum from sedentary Aß1-40-exposed mice, characterized by shorter microvilli and heterogeneity in the length of these structures that exhibit a disordered packing. Regarding the ultrastructure of Paneth cells, Aß1-40 administration caused a reduction in the secretory granule diameter, as well as an enlarged peripheral halo. These animals also presented reduced Firmicutes and increased Bacteroidetes abundance, and increased Bacteroidetes/Firmicutes ratio. Most of the alterations observed in Aß1-40-exposed mice were prevented by the practice of physical exercise. Altogether the results provide evidence of the prophylactic effect of physical exercise on Aß1-40-induced depressive-like behavior and gut dysfunction in mice, suggesting that physical exercise could be useful for preventing depression associated with AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/administração & dosagem , Depressão/fisiopatologia , Duodeno/fisiopatologia , Fragmentos de Peptídeos/administração & dosagem , Condicionamento Físico Animal , Animais , Depressão/induzido quimicamente , Modelos Animais de Doenças , Masculino , Camundongos
11.
Int J Biol Macromol ; 156: 1-9, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275993

RESUMO

Lectins from Diocleinae subtribe species (family Leguminosae) are of special interest since they present a wide spectrum of biological activities, despite their high structural similarity. During their synthesis in plant cells, these proteins undergo post-translational processing resulting in the formation of three chains (α, ß, γ), which constitute the lectins' subunits. Furthermore, such wild-type proteins are presented as isolectins or with different combinations of these chains, which undermine their biotechnological potential. Thus, the present study aimed to produce a recombinant form of the lectin from Dioclea sclerocarpa seeds (DSL), exclusively constituted by α-chain. The recombinant DSL (rDSL) was successfully expressed in E. coli BL21 (DE3) and purified by affinity chromatography (Sephadex G-50), showing a final yield of 74 mg of protein per liter of culture medium and specificity for D-mannose, α-methyl-mannoside and melibiose, unlike the wild-type protein. rDSL presented an effective vasorelaxant effect in rat aortas up to 100% and also interacted with glioma cells C6 and U87. Our results demonstrated an efficient recombinant production of rDSL in a bacterial system that retained some biochemical properties of the wild-type protein, showing wider versatility in sugar specificities and better efficacy in its activity in the biological models evaluated in this work.


Assuntos
Dioclea/química , Lectinas de Plantas/química , Animais , Aorta/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Glioma/metabolismo , Hemaglutinação , Manose/química , Lectinas de Plantas/metabolismo , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Sementes/química , Vasodilatadores/química
12.
Int J Biol Macromol ; 134: 660-672, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054301

RESUMO

The antitumor activity of DVL, a lectin purified from Dioclea violacea seeds, on the U87 human glioma cell line was evaluated and compared with Canavalia ensiformis lectin (ConA). Treatment with DVL (10-100 µg/mL; 24-96 h) induced alterations in cell morphology, decreased cell numbers and clonogenic survival in a time- and concentration-dependent manner. DVL caused significant decreases in cell viability and impaired cell migration. Mechanistically, DVL treatment (12 h) disrupted mitochondrial electrochemical gradient, without ROS accumulation or caspase activation. In the absence of apoptosis, DVL (30-100 µg/mL), instead, induced autophagy, as detected by acridine orange staining and cleavage of LC3I. Inhibition of autophagy with 3-Methyladenine (3-MA) and Chloroquine partially abrogated DVL, but not ConA, cytotoxicity. The modulation of signaling pathways that orchestrate autophagic and cell survival processes were analyzed. DVL (30-100 µg/mL) decreased Akt, mTORC1 and ERK1/2 phosphorylation and augmented JNK(p54) and p38MAPK phosphorylation. DVL was more potent than ConA for most parameters analyzed. Even though both lectins showed cytotoxicity to glioma cells, they spared primary astrocyte cultures. The results suggest a selective antiglioma activity of DVL by inhibiting U87 glioma cell migration and proliferation and inducing cell death, partially associated with autophagy, and likely involving Akt and mTORC1 dephosphorylation.


Assuntos
Autofagia/efeitos dos fármacos , Dioclea/química , Lectinas de Plantas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioma/genética , Glioma/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
J Psychiatr Res ; 115: 103-112, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128500

RESUMO

The ketamine's potential for the treatment of refractory depression and anxiety has been considered one the most important discoveries in the last years, however, repeated use of ketamine is limited due to its side/adverse effects. Therefore, the search for effective augmentation strategies that may reduce ketamine doses is welcome. Therefore, this study sought to augment the effect of ketamine by guanosine in the novelty-suppressed feeding (NSF) test, a behavioral paradigm able to detect depression/anxiety-related behavior. Acute administration of guanosine (0.05 mg/kg, p.o.), similar to ketamine (1 mg/kg, i.p.), produced a rapid behavioral response in mice submitted to NSF test. Moreover, the coadministration of sub-effective doses of guanosine (0.01 mg/kg, p.o.) and ketamine (0.1 mg/kg, i.p.) was effective in mice submitted to NSF test. Subsequently, the intracellular mechanism underpinning the augmentation effect of ketamine by guanosine was investigated. Our results suggest that augmentation response of ketamine by guanosine in the NSF test probably involves the activation of mTOR signaling, since the treatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTOR inhibitor) completely abolished this effect. This augmentation strategy also increased mTOR phosphorylation (Ser2448) in the hippocampus, reinforcing the role of mTOR in this augmentation response. However, no changes in the p70S6K, PSD-95, GluA1, and synapsin immunocontents were found in the hippocampus of ketamine plus guanosine-treated mice. Overall, results provide evidence that guanosine is able to augment the effect of ketamine in the NSF test via mTOR activation, a finding that might have therapeutic implications for the management of depression/anxiety.


Assuntos
Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Ketamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Animais , Sinergismo Farmacológico , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Guanosina/administração & dosagem , Ketamina/administração & dosagem , Camundongos
14.
Int J Biol Macromol ; 120(Pt A): 566-577, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30145160

RESUMO

Plant lectins have been studied owing to their structural properties and biological effects that include agglutinating activity, antidepressant-like effect and antitumor property. The results from this work showed the effects of the lectin extracted from the Dioclea violacea plant (DVL) on the C6 rat glioma cell line. DVL treatment was able to induce caspase-3 activation, apoptotic cell death and cellular membrane damage. Furthermore, DVL decreased mitochondrial membrane potential and increased the number of acidic vesicles and cleavage of LC3, indicating activation of autophagic processes. DVL also significantly inhibited cell migration. Compared to ConA, a well-studied lectin extracted from Canavalia ensiformes seeds, some effects of DVL were more potent, including decreasing C6 glioma cell viability and migration ability. Taken together, the results suggest that DVL can induce glioma cell death, autophagy and inhibition of cell migration, displaying potential anti-glioma activity.


Assuntos
Autofagia/efeitos dos fármacos , Dioclea/química , Expressão Gênica/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Canavalia/química , Caspase 3/genética , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Concanavalina A/isolamento & purificação , Concanavalina A/farmacologia , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Lectinas de Plantas/isolamento & purificação , Ratos
15.
Neurochem Int ; 118: 275-285, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763645

RESUMO

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most robust neurobiological findings in the pathophysiology of major depressive disorder (MDD) over the last 40 years. The persistent increase in glucocorticoids levels induces morphological and anatomical changes in the brain, especially in the hippocampus. Ketamine represents a major advance for the treatment of MDD, however the psychotomimetic effects of this compound limit its widespread use. Agmatine is a neuromodulator that has been shown to be a putative novel and well-tolerated antidepressant/augmenter drug. In this study, the exposure of HT22 hippocampal neuronal cell line to corticosterone (50 µM) induced a significant neuronal cell death. Interestingly, the incubation of HT22 cells with the fast-acting antidepressant drug ketamine (1 µM) prevented the corticosterone-induced toxicity. Similarly, agmatine caused a significant cytoprotection at the concentration of 0.1 µM against corticosterone (50 µM) cell damage. Notably, the incubation with a subthreshold concentration of ketamine (0.01 µM) in combination with a subthreshold concentration of agmatine (0.001 µM) prevented the neuronal damage elicited by corticosterone (50 µM). A 24 h co-incubation with subthreshold concentrations of ketamine (0.01 µM) and agmatine (0.001 µM) was able to cause a significant increase in the phosphorylation levels of Akt (Ser473) and p70S6 kinase (Thr389) as well as PSD95 immunocontent. Neither glycogen synthase kinase-3ß (Ser9) phosphorylation nor ß catenin immunocontent were altered by a 24 h co-incubation period. Finally, the co-incubation of cells for 30 min did not produce any effect in the phosphorylation or immunocontent of any protein investigated. Taken together, our results support the notion that the combination of subthreshold concentrations of ketamine and agmatine has cytoprotective effects against corticosterone-induced cell death. This effect is accompanied by its ability to activate Akt and mTOR/S6 kinase signaling pathway, and increase the expression of synaptic proteins.


Assuntos
Agmatina/administração & dosagem , Ketamina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Analgésicos/administração & dosagem , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Corticosterona/toxicidade , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Camundongos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...