Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Med Phys ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008812

RESUMO

BACKGROUND: Lesion detection is one of the most important clinical tasks in positron emission tomography (PET) for oncology. An anthropomorphic model observer (MO) designed to replicate human observers (HOs) in a detection task is an important tool for assessing task-based image quality. The channelized Hotelling observer (CHO) has been the most popular anthropomorphic MO. Recently, deep learning MOs (DLMOs), mostly based on convolutional neural networks (CNNs), have been investigated for various imaging modalities. However, there have been few studies on DLMOs for PET. PURPOSE: The goal of the study is to investigate whether DLMOs can predict HOs better than conventional MOs such as CHO in a two-alternative forced-choice (2AFC) detection task using PET images with real anatomical variability. METHODS: Two types of DLMOs were implemented: (1) CNN DLMO, and (2) CNN-SwinT DLMO that combines CNN and Swin Transformer (SwinT) encoders. Lesion-absent PET images were reconstructed from clinical data, and lesion-present images were reconstructed with adding simulated lesion sinogram data. Lesion-present and lesion-absent PET image pairs were labeled by eight HOs consisting of four radiologists and four image scientists in a 2AFC detection task. In total, 2268 pairs of lesion-present and lesion-absent images were used for training, 324 pairs for validation, and 324 pairs for test. CNN DLMO, CNN-SwinT DLMO, CHO with internal noise, and non-prewhitening matched filter (NPWMF) were compared in the same train-test paradigm. For comparison, six quantitative metrics including prediction accuracy, mean squared errors (MSEs) and correlation coefficients, which measure how well a MO predicts HOs, were calculated in a 9-fold cross-validation experiment. RESULTS: In terms of the accuracy and MSE metrics, CNN DLMO and CNN-SwinT DLMO showed better performance than CHO and NPWMF, and CNN-SwinT DLMO showed the best performance among the MOs evaluated. CONCLUSIONS: DLMO can predict HOs more accurately than conventional MOs such as CHO in PET lesion detection. Combining SwinT and CNN encoders can improve the DLMO prediction performance compared to using CNN only.

2.
Phys Med Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959903

RESUMO

Respiratory motion correction is beneficial in PET, as it can reduce artefacts caused by motion and improve quantitative accuracy. Methods of motion correction are commonly based on a respiratory trace obtained through an external device (like the Real Time Position Management System) or a data driven method, such as those based on dimensionality reduction techniques (for instance PCA). PCA itself being a linear transformation to the axis of greatest variation. Data driven methods have the advantage of being non-invasive, and can be performed post-acquisition. However, their main downside being that they are adversely affected by the tracer kinetics of the dynamic PET acquisition. Therefore, they are mostly limited to static PET acquisitions. This work seeks to extend on existing PCA-based data-driven motion correction methods, to allow for their applicability to dynamic PET imaging. The methods explored in this work include; a moving window approach (similar to the Kinetic Respiratory Gating method from Schleyer et al.), extrapolation of the principal component from later time points to earlier time points, and a method to score, select, and combine multiple respiratory components. The resulting respiratory traces were evaluated on 22 data sets from a dynamic 18FFDG study on patients with Idiopathic Pulmonary Fibrosis. This was achieved by calculating their correlation with a surrogate signal acquired using a Real Time Position Management System. The results indicate that all methods produce better surrogate signals than when applying conventional PCA to dynamic data (for instance, a higher correlation with a gold standard respiratory trace). Extrapolating a late time point principal component produced more promising results than using a moving window. Scoring, selecting, and combining components held benefits over all other methods. This work allows for the extraction of a surrogate signal from dynamic PET data earlier in the acquisition and with a greater accuracy than previous work. This potentially allows for numerous other methods (for instance, respiratory motion correction) to be applied to this data (when they otherwise could not be previously used).

3.
EJNMMI Phys ; 11(1): 28, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488923

RESUMO

BACKGROUND: Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality. RESULTS: Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUVmax of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710. CONCLUSIONS: The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.

4.
Med Phys ; 50(5): 2998-3007, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36576853

RESUMO

PURPOSE: The main goal of this work is to describe a phantom design, data acquisition and data analysis methodology enabling comparison of small lesion detectability between PET imaging systems and reconstruction algorithms. Several methods are currently available to characterize intrinsic and image quality performance, but none focus exclusively on small lesion detectability. METHODS: We previously developed a small-lesion detection phantom and described initial results using a head-size phantom. Unlike most fillable nuclear medicine phantoms, this phantom offers a semi-realistic heterogenous background and wall-less contrast features. In this work, the methodology is extended to include (a) the use of both head- and body-sized phantoms and (b) a multi-scan data collection and analysis method. We present an example use case of the phantom and detection estimation methodology, comparing the small-lesion detection performance across four commercial PET/CT systems. RESULTS: Repeat acquisitions of the phantom enabled estimation of model observer performance and surrogates of detectability. As anticipated, estimated detectability increased with the square root of system sensitivity and TOF offered marked improvement in detectability, especially for the body sized object. The proposed approach characterizing detectability at different times during the decay of the phantom enabled comparison of small lesion detectability at matched activity concentrations (and scan durations) across different scanners. CONCLUSION: The proposed approach offers a reproducible tool for evaluating relative tradeoffs of system performance on small lesion detectability.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Algoritmos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
Eur J Nucl Med Mol Imaging ; 49(11): 3740-3749, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35507059

RESUMO

PURPOSE: To improve the quantitative accuracy and diagnostic confidence of PET images reconstructed without time-of-flight (ToF) using deep learning models trained for ToF image enhancement (DL-ToF). METHODS: A total of 273 [18F]-FDG PET scans were used, including data from 6 centres equipped with GE Discovery MI ToF scanners. PET data were reconstructed using the block-sequential-regularised-expectation-maximisation (BSREM) algorithm with and without ToF. The images were then split into training (n = 208), validation (n = 15), and testing (n = 50) sets. Three DL-ToF models were trained to transform non-ToF BSREM images to their target ToF images with different levels of DL-ToF strength (low, medium, high). The models were objectively evaluated using the testing set based on standardised uptake value (SUV) in 139 identified lesions, and in normal regions of liver and lungs. Three radiologists subjectively rated the models using testing sets based on lesion detectability, diagnostic confidence, and image noise/quality. RESULTS: The non-ToF, DL-ToF low, medium, and high methods resulted in - 28 ± 18, - 28 ± 19, - 8 ± 22, and 1.7 ± 24% differences (mean; SD) in the SUVmax for the lesions in testing set, compared to ToF-BSREM image. In background lung VOIs, the SUVmean differences were 7 ± 15, 0.6 ± 12, 1 ± 13, and 1 ± 11% respectively. In normal liver, SUVmean differences were 4 ± 5, 0.7 ± 4, 0.8 ± 4, and 0.1 ± 4%. Visual inspection showed that our DL-ToF improved feature sharpness and convergence towards ToF reconstruction. Blinded clinical readings of testing sets for diagnostic confidence (scale 0-5) showed that non-ToF, DL-ToF low, medium, and high, and ToF images scored 3.0, 3.0, 4.1, 3.8, and 3.5 respectively. For this set of images, DL-ToF medium therefore scored highest for diagnostic confidence. CONCLUSION: Deep learning-based image enhancement models may provide converged ToF-equivalent image quality without ToF reconstruction. In clinical scoring DL-ToF-enhanced non-ToF images (medium and high) on average scored as high as, or higher than, ToF images. The model is generalisable and hence, could be applied to non-ToF images from BGO-based PET/CT scanners.


Assuntos
Aprendizado Profundo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Algoritmos , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X
6.
Eur J Nucl Med Mol Imaging ; 49(2): 539-549, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318350

RESUMO

PURPOSE: To enhance the image quality of oncology [18F]-FDG PET scans acquired in shorter times and reconstructed by faster algorithms using deep neural networks. METHODS: List-mode data from 277 [18F]-FDG PET/CT scans, from six centres using GE Discovery PET/CT scanners, were split into ¾-, ½- and »-duration scans. Full-duration datasets were reconstructed using the convergent block sequential regularised expectation maximisation (BSREM) algorithm. Short-duration datasets were reconstructed with the faster OSEM algorithm. The 277 examinations were divided into training (n = 237), validation (n = 15) and testing (n = 25) sets. Three deep learning enhancement (DLE) models were trained to map full and partial-duration OSEM images into their target full-duration BSREM images. In addition to standardised uptake value (SUV) evaluations in lesions, liver and lungs, two experienced radiologists scored the quality of testing set images and BSREM in a blinded clinical reading (175 series). RESULTS: OSEM reconstructions demonstrated up to 22% difference in lesion SUVmax, for different scan durations, compared to full-duration BSREM. Application of the DLE models reduced this difference significantly for full-, ¾- and ½-duration scans, while simultaneously reducing the noise in the liver. The clinical reading showed that the standard DLE model with full- or ¾-duration scans provided an image quality substantially comparable to full-duration scans with BSREM reconstruction, yet in a shorter reconstruction time. CONCLUSION: Deep learning-based image enhancement models may allow a reduction in scan time (or injected activity) by up to 50%, and can decrease reconstruction time to a third, while maintaining image quality.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X
7.
Radiology ; 294(3): 647-657, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31909700

RESUMO

The Quantitative Imaging Biomarkers Alliance (QIBA) Profile for fluorodeoxyglucose (FDG) PET/CT imaging was created by QIBA to both characterize and reduce the variability of standardized uptake values (SUVs). The Profile provides two complementary claims on the precision of SUV measurements. First, tumor glycolytic activity as reflected by the maximum SUV (SUVmax) is measurable from FDG PET/CT with a within-subject coefficient of variation of 10%-12%. Second, a measured increase in SUVmax of 39% or more, or a decrease of 28% or more, indicates that a true change has occurred with 95% confidence. Two applicable use cases are clinical trials and following individual patients in clinical practice. Other components of the Profile address the protocols and conformance standards considered necessary to achieve the performance claim. The Profile is intended for use by a broad audience; applications can range from discovery science through clinical trials to clinical practice. The goal of this report is to provide a rationale and overview of the FDG PET/CT Profile claims as well as its context, and to outline future needs and potential developments.


Assuntos
Fluordesoxiglucose F18/uso terapêutico , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Biomarcadores Tumorais/análise , Humanos , Interpretação de Imagem Assistida por Computador , Estadiamento de Neoplasias , Neoplasias/patologia , Neoplasias/terapia , Resultado do Tratamento
8.
Phys Med Biol ; 62(8): 3204-3220, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28346222

RESUMO

Patient respiratory motion during PET image acquisition leads to blurring in the reconstructed images and may cause significant artifacts, resulting in decreased lesion detectability, inaccurate standard uptake value calculation and incorrect treatment planning in radiation therapy. To reduce these effects data can be regrouped into (nearly) 'motion-free' gates prior to reconstruction by selecting the events with respect to the breathing phase. This gating procedure therefore needs a respiratory signal: on current scanners it is obtained from an external device, whereas with data driven (DD) methods it can be directly obtained from the raw PET data. DD methods thus eliminate the use of external equipment, which is often expensive, needs prior setup and can cause patient discomfort, and they could also potentially provide increased fidelity to the internal movement. DD methods have been recently applied on PET data showing promising results. However, many methods provide signals whose direction with respect to the physical motion is uncertain (i.e. their sign is arbitrary), therefore a maximum in the signal could refer either to the end-inspiration or end-expiration phase, possibly causing inaccurate motion correction. In this work we propose two novel methods, CorrWeights and CorrSino, to detect the correct direction of the motion represented by the DD signal, that is obtained by applying principal component analysis (PCA) on the acquired data. They only require the PET raw data, and they rely on the assumption that one of the major causes of change in the acquired data related to the chest is respiratory motion in the axial direction, that generates a cranio-caudal motion of the internal organs. We also implemented two versions of a published registration-based method, that require image reconstruction. The methods were first applied on XCAT simulations, and later evaluated on cancer patient datasets monitored by the Varian Real-time Position ManagementTM (RPM) device, selecting the lower chest bed positions. For each patient different time intervals were evaluated ranging from 50 to 300 s in duration. The novel methods proved to be generally more accurate than the registration-based ones in detecting the correct sign of the respiratory signal, and their failure rates are lower than 3% when the DD signal is highly correlated with the RPM. They also have the advantage of faster computation time, avoiding reconstruction. Moreover, CorrWeights is not specifically related to PCA and considering its simple implementation, it could easily be applied together with any DD method in clinical practice.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Algoritmos , Artefatos , Humanos , Movimento (Física) , Tomografia por Emissão de Pósitrons/normas , Respiração , Técnicas de Imagem de Sincronização Respiratória/normas
9.
J Med Imaging (Bellingham) ; 4(1): 011002, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27921073

RESUMO

We have previously developed a convergent penalized likelihood (PL) image reconstruction algorithm using the relative difference prior (RDP) and showed that it achieves more accurate lesion quantitation compared to ordered subsets expectation maximization (OSEM). We evaluated the detectability of low-contrast liver and lung lesions using the PL-RDP algorithm compared to OSEM. We performed a two-alternative forced choice study using a channelized Hotelling observer model that was previously validated against human observers. Lesion detectability showed a stronger dependence on lesion size for PL-RDP than OSEM. Lesion detectability was improved using time-of-flight (TOF) reconstruction, with greater benefit for the liver compared to the lung and with increasing benefit for decreasing lesion size and contrast. PL detectability was statistically significantly higher than OSEM for 20 mm liver lesions when contrast was [Formula: see text] ([Formula: see text]), and TOF PL detectability was statistically significantly higher than TOF OSEM for 15 and 20 mm liver lesions with contrast [Formula: see text] and [Formula: see text], respectively. For all other cases, there was no statistically significant difference between PL and OSEM ([Formula: see text]). For the range of studied lesion properties, lesion detectability using PL-RDP was equivalent or improved compared to using OSEM.

10.
Nucl Med Commun ; 38(1): 57-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27755394

RESUMO

PURPOSE: To investigate the clinical performance of a block sequential regularized expectation maximization (BSREM) penalized likelihood reconstruction algorithm in oncologic PET/computed tomography (CT) studies. METHODS: A total of 410 reconstructions of 41 fluorine-18 fluorodeoxyglucose-PET/CT studies of 41 patients with a total of 2010 lesions were analyzed by two experienced nuclear medicine physicians. Images were reconstructed with BSREM (with four different ß values) or ordered subset expectation maximization (OSEM) algorithm with/without time-of-flight (TOF/non-TOF) corrections. OSEM reconstruction postfiltering was 4.0 mm full-width at half-maximum; BSREM did not use postfiltering. Evaluation of general image quality was performed with a five-point scale using maximum intensity projections. Artifacts (category 1), image sharpness (category 2), noise (category 3), and lesion detectability (category 4) were analyzed using a four-point scale. Size and maximum standardized uptake value (SUVmax) of lesions were measured by a third reader not involved in the image evaluation. RESULTS: BSREM-TOF reconstructions showed the best results in all categories, independent of different body compartments. In all categories, BSREM non-TOF reconstructions were significantly better than OSEM non-TOF reconstructions (P<0.001). In almost all categories, BSREM non-TOF reconstruction was comparable to or better than the OSEM-TOF algorithm (P<0.001 for general image quality, image sharpness, noise, and P=1.0 for artifact). Only in lesion detectability was OSEM-TOF significantly better than BSREM non-TOF (P<0.001). Both BSREM-TOF and BSREM non-TOF showed a decreasing SUVmax with increasing ß values (P<0.001) and TOF reconstructions showed a significantly higher SUVmax than non-TOF reconstructions (P<0.001). CONCLUSION: The BSREM reconstruction algorithm showed a relevant improvement compared with OSEM reconstruction in PET/CT studies in all evaluated categories. BSREM might be used in clinical routine in conjunction with TOF to achieve better/higher image quality and lesion detectability or in PET/CT-systems without TOF-capability for enhancement of overall image quality as well.


Assuntos
Algoritmos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos , Artefatos , Estudos de Coortes , Radioisótopos de Flúor , Humanos , Funções Verossimilhança , Análise Multivariada , Neoplasias/diagnóstico por imagem , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Razão Sinal-Ruído
11.
Med Phys ; 43(11): 6175, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27806605

RESUMO

PURPOSE: This investigation aimed to develop a scanner quantification performance methodology and compare multiple metrics between two scanners under different imaging conditions. Most PET scanners are designed to work over a wide dynamic range of patient imaging conditions. Clinical constraints, however, often impact the realization of the entitlement performance for a particular scanner design. Using less injected dose and imaging for a shorter time are often key considerations, all while maintaining "acceptable" image quality and quantitative capability. METHODS: A dual phantom measurement including resolution inserts was used to measure the effects of in-plane (x, y) and axial (z) system resolution between two PET/CT systems with different block detector crystal dimensions. One of the scanners had significantly thinner slices. Several quantitative measures, including feature contrast recovery, max/min value, and feature profile accuracy were derived from the resulting data and compared between the two scanners and multiple phantoms and alignments. RESULTS: At the clinically relevant count levels used, the scanner with thinner slices had improved performance of approximately 2%, averaged over phantom alignments, measures, and reconstruction methods, for the head-sized phantom, mainly demonstrated with the rods aligned perpendicular to the scanner axis. That same scanner had a slightly decreased performance of -1% for the larger body-size phantom, mostly due to an apparent noise increase in the images. Most of the differences in the metrics between the two scanners were less than 10%. CONCLUSIONS: Using the proposed scanner performance methodology, it was shown that smaller detector elements and a larger number of image voxels require higher count density in order to demonstrate improved image quality and quantitation. In a body imaging scenario under typical clinical conditions, the potential advantages of the design must overcome increases in noise due to lower count density.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Algoritmos , Humanos
12.
Med Phys ; 43(9): 5051, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27587035

RESUMO

PURPOSE: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of (18)F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. METHODS: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The features filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. RESULTS: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. CONCLUSIONS: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.


Assuntos
Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Desenho de Equipamento , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador
13.
PLoS One ; 10(7): e0128842, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147919

RESUMO

PURPOSE: To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. MATERIALS AND METHODS: A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. RESULTS: The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. CONCLUSION: The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings.


Assuntos
Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos
14.
Phys Med Biol ; 60(15): 5733-51, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26158503

RESUMO

Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Funções Verossimilhança , Hepatopatias/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Antropometria , Teorema de Bayes , Humanos , Interpretação de Imagem Assistida por Computador , Hepatopatias/patologia , Probabilidade
15.
Med Phys ; 42(1): 110-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25563252

RESUMO

PURPOSE: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. METHODS: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV(max), SUV(mean), SUV(peak), and segmented tumor volume was evaluated as RC(max), RC(mean), RC(peak), and RC(vol), representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal-Wallis ANOVA were used to test for significant differences. RESULTS: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, -1.8 ± 6.5, -3.2 ± 5.0, and 3.0 ± 5.9 for RC(max), RC(peak), RC(mean), and RC(vol). In comparison, recovery coefficients for phase-matched CTAC were -8.4 ± 5.3, -10.5 ± 6.2, -7.6 ± 5.0, and -13.0 ± 7.7 for RC(max), RC(peak), RC(mean), and RC(vol). When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by the patient-specific respiratory waveforms; when testing patient and sinusoidal waveforms separately, patient waveforms were significantly different between phases (p < 0.0001) while the sinusoidal waveforms were not significantly different (p = 0.98). When considering only the subset of 4DMATCH images that corresponded to the end-exhale image phase, 4DEXH, mean and interquartile range were similar to 4DMATCH but variability was considerably reduced. CONCLUSIONS: Comparative advantages in accuracy and precision of SUV metrics and segmented volumes were demonstrated with the use of the maximum intensity projection and end-exhale CT attenuation correction. While respiratory phase-matched CTAC should in theory provide optimal corrections, image artifacts and differences in implementation of 4DCT and 4DPET sorting can degrade the benefit of this approach. These results may be useful to guide the implementation, analysis, and development of respiratory-correlated thoracic PET/CT in the radiation oncology and diagnostic settings.


Assuntos
Tomografia Computadorizada Quadridimensional , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Respiração , Artefatos , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Imagens de Fantasmas
16.
EJNMMI Phys ; 1(1): 103, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26501461

RESUMO

BACKGROUND: The purpose of this study is to describe a clinical relation of noise equivalent count rate (NECR) - an objective measurement of positron emission tomography (PET) systems - measured in a large number of patients, to clinical image quality of PET and their relation to 18F-fluoro-2-deoxyglucose (FDG) activity and patient's weight. METHODS: A total of 71 consecutive patients were evaluated in this retrospective study. All data was automatically analysed using Matlab to estimate the noise equivalent count rate. Then, image quality was evaluated according to two subjective scores: the IQ local score was a 3-point scale assigned to each bed position in all patients and the IQ global score was a 10-point scale assigned after evaluating the coronal whole-body PET. Patient data was also analysed concerning weight, body mass index, FDG dose at the start of acquisition (D Acq), presence of bowel uptake and presence of FDG-positive pathologic lesions. Two additional parameters were defined for each patient: the ratio between D Acq and patient weight (R DW) and the ratio between D Acq and patient BMI (R DBMI). RESULTS: Clinically perceived image quality in PET has a significant positive correlation with NECR measured in patients, R DW, R DBMI and presence of pathologic lesions. Clinical image quality furthermore has significant negative correlation with weight, body mass index (BMI) and presence of bowel uptake. Thresholds of R DW and R DBMI in which clinical IQ is good to excellent in more than 90% of the patients were 2.6 and 8.0, respectively. CONCLUSIONS: Clinically perceived image quality in PET systems is positively and significantly related to NECR measured in patients. An optimal threshold for the R DW and R DBMI was defined in which clinical IQ is good to excellent in more than 90% of patients. With this data, it is possible to extrapolate technical as well as clinical image quality to other PET system and to predict clinical image perception.

17.
MAGMA ; 27(2): 149-59, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23800803

RESUMO

OBJECT: The aim of this study was to determine the impact to PET quantification, image quality and possible diagnostic impact of an anterior surface array used in a combined PET/MR imaging system. MATERIALS AND METHODS: An extended oval phantom and 15 whole-body FDG PET/CT subjects were re-imaged for one bed position following placement of an anterior array coil at a clinically realistic position. The CT scan, used for PET attenuation correction, did not include the coil. Comparison, including liver SUV(mean), was performed between the coil present and absent images using two methods of PET reconstruction. Due to the time delay between PET scans, a model was used to account for average physiologic time change of SUV. RESULTS: On phantom data, neglecting the coil caused a mean bias of -8.2% for non-TOF/PSF reconstruction, and -7.3% with TOF/PSF. On clinical data, the liver SUV neglecting the coil presence fell by -6.1% (± 6.5%) for non-TOF/PSF reconstruction; respectively -5.2% (± 5.3%) with TOF/PSF. All FDG-avid features seen with TOF/PSF were also seen with non-TOF/PSF reconstruction. CONCLUSION: Neglecting coil attenuation for this anterior array coil results in a small but significant reduction in liver SUV(mean) but was not found to change the clinical interpretation of the PET images.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Hepatopatias/diagnóstico , Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetismo/instrumentação , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores , Imagem Corporal Total/métodos
18.
J Med Imaging (Bellingham) ; 1(2): 026001, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26158039

RESUMO

The objective of this investigation was to propose techniques for determining which patients are likely to benefit from quantitative respiratory-gated imaging by correlating respiratory patterns to changes in positron emission tomography (PET) metrics. Twenty-six lung and liver cancer patients underwent PET/computed tomography exams with recorded chest/abdominal displacements. Static and adaptive amplitude-gated [[Formula: see text]]fluoro-D-glucose (FDG) PET images were generated from list-mode acquisitions. Patients were grouped by respiratory pattern, lesion location, or degree of lesion attachment to anatomical structures. Respiratory pattern metrics were calculated during time intervals corresponding to PET field of views over lesions of interest. FDG PET images were quantified by lesion maximum standardized uptake value ([Formula: see text]). Relative changes in [Formula: see text] between static and gated PET images were tested for association to respiratory pattern metrics. Lower lung lesions and liver lesions had significantly higher changes in [Formula: see text] than upper lung lesions (14 versus 3%, [Formula: see text]). Correlation was highest ([Formula: see text], [Formula: see text], [Formula: see text]) between changes in [Formula: see text] and nonstandard respiratory pattern metrics. Lesion location had a significant impact on changes in PET quantification due to respiratory gating. Respiratory pattern metrics were correlated to changes in [Formula: see text], though sample size limited statistical power. Validation in larger cohorts may enable selection of patients prior to acquisition who would benefit from respiratory-gated PET imaging.

19.
Eur J Nucl Med Mol Imaging ; 39(7): 1154-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526955

RESUMO

PURPOSE: Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging. METHODS: In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference. RESULTS: Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2 ± 5.4% (range 1.5-30.8%) and 3.2 ± 1.7% (range 0.2-4%), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9 ± 3.4% (range 9.9-23.5%) and for osteolytic spine lesions, 7.2 ± 1.7% (range 4.9-9.3%), respectively. CONCLUSION: CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Adulto , Idoso , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fluordesoxiglucose F18/farmacocinética , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
20.
Med Phys ; 37(9): 5037-43, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964223

RESUMO

PURPOSE: To minimize respiratory motion artifacts, this work proposes quiescent period gating (QPG) methods that extract PET data from the end-expiration quiescent period and form a single PET frame with reduced motion and improved signal-to-noise properties. METHODS: Two QPG methods are proposed andevaluated. Histogram-based quiescent period gating (H-QPG) extracts a fraction of PET data determined by a window of the respiratory displacement signal histogram. Cycle-based quiescent period gating (C-QPG) extracts data with a respiratory displacement signal below a specified threshold of the maximum amplitude of each individual respiratory cycle. Performances of both QPG methods were compared to ungated and five-bin phase-gated images across 21 FDG-PET/CT patient data sets containing 31 thorax and abdomen lesions as well as with computer simulations driven by 1295 different patient respiratory traces. Image quality was evaluated in terms of the lesion SUV(max) and the fraction of counts included in each gate as a surrogate for image noise. RESULTS: For all the gating methods, image noise artifactually increases SUV(max) when the fraction of counts included in each gate is less than 50%. While simulation data show that H-QPG is superior to C-QPG, the H-QPG and C-QPG methods lead to similar quantification-noise tradeoffs in patient data. Compared to ungated images, both QPG methods yield significantly higher lesion SUV(max). Compared to five-bin phase gating, the QPG methods yield significantly larger fraction of counts with similar SUV(max) improvement. Both QPG methods result in increased lesion SUV(max) for patients whose lesions have longer quiescent periods. CONCLUSIONS: Compared to ungated and phase-gated images, the QPG methods lead to images with less motion blurring and an improved compromise between SUV(max) and fraction of counts. The QPG methods for respiratory motion compensation could effectively improve tumor quantification with minimal noise increase.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Descanso , Tomografia Computadorizada por Raios X/métodos , Idoso , Humanos , Pessoa de Meia-Idade , Respiração , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...