Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(24)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36806199

RESUMO

Conductive bridge random access memory devices such as Cu/SiO2/W are promising candidates for applications in neuromorphic computing due to their fast, low-voltage switching, multiple-conductance states, scalability, low off-current, and full compatibility with advanced Si CMOS technologies. The conductance states, which can be quantized, originate from the formation of a Cu filament in the SiO2electrolyte due to cation-migration-based electrochemical processes. A major challenge related to the filamentary nature is the strong variability of the voltage required to switch the device to its conducting state. Here, based on a statistical analysis of more than hundred fifty Cu/SiO2/W devices, we point to the key role of the activation energy distribution for copper ion diffusion in the amorphous SiO2. The cycle-to-cycle variability is modeled well when considering the theoretical energy landscape for Cu diffusion paths to grow the filament. Perspectives of this work point to developing strategies to narrow the distribution of activation energies in amorphous SiO2.

2.
Phys Rev Lett ; 125(18): 185501, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196241

RESUMO

The nanostructure of hydrogenated amorphous silicon (a-Si∶H) is studied by a combination of small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) with a spatial resolution of 0.8 nm. The a-Si∶H materials were deposited using a range of widely varied conditions and are representative for this class of materials. We identify two different phases that are embedded in the a-Si∶H matrix and quantified both according to their scattering cross sections. First, 1.2 nm sized voids (multivacancies with more than 10 missing atoms) which form a superlattice with 1.6 nm void-to-void distance are detected. The voids are found in concentrations as high as 6×10^{19} cm^{-3} in a-Si∶H material that is deposited at a high rate. Second, dense ordered domains (DOD) that are depleted of hydrogen with 1 nm average diameter are found. The DOD tend to form 10-15 nm sized aggregates and are largely found in all a-Si∶H materials considered here. These quantitative findings make it possible to understand the complex correlation between structure and electronic properties of a-Si∶H and directly link them to the light-induced formation of defects. Finally, a structural model is derived, which verifies theoretical predictions about the nanostructure of a-Si∶H.

3.
ACS Appl Mater Interfaces ; 12(2): 3140-3149, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829545

RESUMO

Electronic properties and charge transfer processes were studied in an n-Si(n++)/TiO2(ALD) system at an amorphous TiO2/anatase transition by transient surface photovoltage spectroscopy at constant photon flux. The TiO2 layers were deposited by atomic layer deposition (ALD) onto highly doped silicon (c-Si(n++)), and the phase composition of the TiO2 layers changed with increasing thickness from amorphous to the anatase polymorph as anatase crystallites started to grow at the surface. Depending on phase composition, the band gap of TiO2 correlated with the characteristic energy of exponential tails. In most cases, photogenerated electrons were separated toward the back contact. For photogeneration in c-Si(n++), electron back transfer was limited by Auger recombination with holes in the surface space charge region of c-Si(n++), and by electron transfer across the interface, either via exponentially distributed states near the conduction band edge of amorphous TiO2 or via distance-dependent recombination with holes trapped in anatase. For photogeneration in TiO2, electron back transfer was limited by trapping in TiO2. Under strong light absorption in amorphous TiO2 with anatase crystallites on top, electrons were preferentially separated toward the TiO2 surface.

4.
Materials (Basel) ; 12(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650608

RESUMO

The crystallisation of sputter-deposited, amorphous In2O3:H films was investigated. The influence of deposition and crystallisation parameters onto crystallinity and electron hall mobility was explored. Significant precipitation of metallic indium was discovered in the crystallised films by electron energy loss spectroscopy. Melting of metallic indium at ~160 °C was suggested to promote primary crystallisation of the amorphous In2O3:H films. The presence of hydroxyl was ascribed to be responsible for the recrystallization and grain growth accompanying the inter-grain In-O-In bounding. Metallic indium was suggested to provide an excess of free electrons in as-deposited In2O3 and In2O3:H films. According to the ultraviolet photoelectron spectroscopy, the work function of In2O3:H increased during crystallisation from 4 eV to 4.4 eV, which corresponds to the oxidation process. Furthermore, transparency simultaneously increased in the infraredspectral region. Water was queried to oxidise metallic indium in UHV at higher temperature as compared to oxygen in ambient air. Secondary ion mass-spectroscopy results revealed that the former process takes place mostly within the top ~50 nm. The optical band gap of In2O3:H increased by about 0.2 eV during annealing, indicating a doping effect. This was considered as a likely intra-grain phenomenon caused by both (In°)O•• and (OH-)O• point defects. The inconsistencies in understanding of In2O3:H crystallisation, which existed in the literature so far, were considered and explained by the multiplicity and disequilibrium of the processes running simultaneously.

5.
Sci Rep ; 7(1): 8506, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819103

RESUMO

Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

6.
ACS Appl Mater Interfaces ; 8(41): 28019-28029, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27556179

RESUMO

In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAuNP@tin-rich ITO (AgAu@ITOTR) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITOTR yolk@shell can easily be tuned. The conductivity of the ITOTR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAgNP@ITOTR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.

7.
Phys Chem Chem Phys ; 17(27): 17934-8, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26094747

RESUMO

Pulsed laser ablation in liquids (PLAL) is a versatile route to stable colloids without the need for stabilizing agents. The use of suspensions instead of bulk targets further simplifies the experimental set-up and even improves the productivity. However, the utilization of this approach is hindered by limited knowledge about the underlying mechanisms of the nanoparticle formation. We present the synthesis of copper(i) iodide nanoparticles via ns-pulsed laser irradiation of CuI powder suspended in water or ethyl acetate. A thorough study of the nanoparticle size by transmission electron microscopy reveals a log-normal distribution with a mean diameter of 31 nm (±11 nm) in water and 18 nm (±7 nm) in ethyl acetate. The duration of the laser irradiation appears to have only a minor influence on the size distribution. Selected area diffraction and electron energy-loss spectroscopy verify the chemical composition of the generated CuI nanoparticles. While comparable precursors like CuO and Cu3N follow a reductive ablation mechanism, a fragmentation mechanism is found for CuI. With a productivity of 1.7 µg J(-1) this pulsed laser fragmentation in liquids (PLFL) proves to be an efficient route to colloidal CuI nanoparticles.

8.
J Phys Chem A ; 118(37): 8329-37, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24834812

RESUMO

Pulsed laser ablation in liquids (PLAL) has developed to a convenient and efficient method for the synthesis of colloidal solutions. So far, in most cases, the laser pulse is focused on bulk targets like metal plates. An interesting alternative is the use of suspended µm-sized precursors. This leads to higher production rates and simpler setups. A thorough understanding of the mechanism is essential in order to gain control over the characteristics of the synthesized nanoparticles. Therefore, we investigated the formation of copper colloids by PLAL of CuO, Cu3N, Cu(N3)2, and Cu2C2 powders in organic liquids. Thus, we can compare copper precursors based on elements of the 4th, 5th, and 6th main group. The chemical composition of the resulting nanoparticles is revealed by electron energy loss spectroscopy (EELS). The presented investigations point to a reductive ablation process followed by laser-driven aggregation and coalescence steps instead of a simple fragmentation mechanism.

9.
ChemSusChem ; 7(3): 854-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24578169

RESUMO

The growing challenges of environmental purification by solar photocatalysis, precious-metal-free catalysis, and photocurrent generation in photovoltaic cells receive the utmost global attention. Here we demonstrate a one-pot, green chemical synthesis of a new stable heterostructured, ecofriendly, multifunctional microcomposite that consists of α-Bi2 O3 microneedles intercalated with anchored graphene oxide (GO) microsheets (1.0 wt %) for the above-mentioned applications on a large economical scale. The bare α-Bi2 O3 microneedles display two times better photocatalytic activities than commercial TiO2 (Degussa-P25), whereas the GO-hybridized composite exhibits approximately four to six times enhanced photocatalytic activities than the neat TiO2 photocatalyst in the degradation of colored aromatic organic dyes (crystal violet and rhodamine 6G) under visible-light irradiation (300 W tungsten lamp). The highly efficient activity is associated with the strong surface adsorption ability of GO for aromatic dye molecules, the high carrier acceptability, and the efficient electron-hole pair separation in Bi2 O3 by individual adjoining GO sheets. The introduction of Ag nanoparticles (2.0 wt %) further enhances the photocatalytic performance of the composite over eightfold because of a plasmon-induced electron-transfer process from Ag nanoparticles through the GO sheets into the conduction band of Bi2 O3 . The new composites are also catalytically active and catalyze the reduction of 4-nitrophenol to 4-aminophenol in the presence of borohydride ions. Photoanodes assembled from GO/α-Bi2 O3 and Ag/GO/α-Bi2 O3 composites display an improved photocurrent response (power conversion efficiency ∼20 % higher) over those prepared without GO in dye-sensitized solar cells.


Assuntos
Bismuto/química , Fontes de Energia Elétrica , Grafite/química , Luz , Óxidos/química , Processos Fotoquímicos , Energia Solar , Catálise , Nanopartículas/química , Propriedades de Superfície
10.
Micron ; 63: 20-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24613674

RESUMO

A Bayesian approach to reconstruction and segmentation of tomographic data is outlined and further detailed for the case of absorption tomography. The algorithm allows the quantification of reconstruction errors and segmentation confidence. Calculation results for various experimental settings (number of projections, incident dose, different materials) are shown and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...