Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1229026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690119

RESUMO

Introduction: Multi-agent systems are an interdisciplinary research field that describes the concept of multiple decisive individuals interacting with a usually partially observable environment. Given the recent advances in single-agent reinforcement learning, multi-agent reinforcement learning (RL) has gained tremendous interest in recent years. Most research studies apply a fully centralized learning scheme to ease the transfer from the single-agent domain to multi-agent systems. Methods: In contrast, we claim that a decentralized learning scheme is preferable for applications in real-world scenarios as this allows deploying a learning algorithm on an individual robot rather than deploying the algorithm to a complete fleet of robots. Therefore, this article outlines a novel actor-critic (AC) approach tailored to cooperative MARL problems in sparsely rewarded domains. Our approach decouples the MARL problem into a set of distributed agents that model the other agents as responsive entities. In particular, we propose using two separate critics per agent to distinguish between the joint task reward and agent-based costs as commonly applied within multi-robot planning. On one hand, the agent-based critic intends to decrease agent-specific costs. On the other hand, each agent intends to optimize the joint team reward based on the joint task critic. As this critic still depends on the joint action of all agents, we outline two suitable behavior models based on Stackelberg games: a game against nature and a dyadic game against each agent. Following these behavior models, our algorithm allows fully decentralized execution and training. Results and Discussion: We evaluate our presented method using the proposed behavior models within a sparsely rewarded simulated multi-agent environment. Although our approach already outperforms the state-of-the-art learners, we conclude this article by outlining possible extensions of our algorithm that future research may build upon.

2.
Front Robot AI ; 9: 993359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313253

RESUMO

This article focuses on learning manipulation skills from episodic reinforcement learning (RL) in unknown environments using industrial robot platforms. These platforms usually do not provide the required compliant control modalities to cope with unknown environments, e.g., force-sensitive contact tooling. This requires designing a suitable controller, while also providing the ability of adapting the controller parameters from collected evidence online. Thus, this work extends existing work on meta-learning for graphical skill-formalisms. First, we outline how a hybrid force-velocity controller can be applied to an industrial robot in order to design a graphical skill-formalism. This skill-formalism incorporates available task knowledge and allows for online episodic RL. In contrast to the existing work, we further propose to extend this skill-formalism by estimating the success probability of the task to be learned by means of factor graphs. This method allows assigning samples to individual factors, i.e., Gaussian processes (GPs) more efficiently and thus allows improving the learning performance, especially at early stages, where successful samples are usually only drawn in a sparse manner. Finally, we propose suitable constraint GP models and acquisition functions to obtain new samples in order to optimize the information gain, while also accounting for the success probability of the task. We outline a specific application example on the task of inserting the tip of a screwdriver into a screwhead with an industrial robot and evaluate our proposed extension against the state-of-the-art methods. The collected data outline that our method allows artificial agents to obtain feasible samples faster than existing approaches, while achieving a smaller regret value. This highlights the potential of our proposed work for future robotic applications.

3.
Front Robot AI ; 7: 609478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34150855

RESUMO

The potential of large elastic deformations in control applications, e.g., robotic manipulation, is not yet fully exploited, especially in dynamic contexts. Mainly because essential geometrically exact continuum models are necessary to express these arbitrarily large deformation dynamics, they typically result in a set of nonlinear, coupled, partial differential equations that are unsuited for control applications. Due to this lack of appropriate models, current approaches that try to exploit elastic properties are limited to either small deflection assumptions or quasistatic considerations only. To promote further exploration of this exciting research field of large elastic deflection control, we propose a geometrically exact, but yet concise a beam model for a planar, shear-, and torsion-free case without elongation. The model is derived by reducing the general geometrically exact the 3D Simo-Reissner beam model to this special case, where the assumption of inextensibility allows expressing the couple of planar Cartesian parameters in terms of the curve tangent angle of the beam center line alone. We further elaborate on how the necessary coupling between position-related boundary conditions (i.e., clamped and hinged ends) and the tangent angle parametrization of the beam model can be incorporated in a finite element method formulation and verify all derived expressions by comparison to analytic initial value solutions and an energy analysis of a dynamic simulation result. The presented beam model opens the possibility of designing online feedback control structures for accessing the full potential that elasticity in planar beam dynamics has to offer.

4.
Front Robot AI ; 6: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501084

RESUMO

In the context of human-robot collaboration in close proximity, safety and comfort are the two important aspects to achieve joint tasks efficiently. For safety, the robot must be able to avoid dynamic obstacles such as a human arm with high reliability. For comfort, the trajectories and avoidance behavior of the robot need to be predictable to the humans. Moreover, these two aspects might be different from person to person or from one task to another. This work presents a framework to generate predictable motions with dynamic obstacle avoidance for the robot interacting with the human by using policy improvement method. The trajectories are generated using Dynamic Motion Primitives with an additional potential field term that penalizes trajectories that may lead to collisions with obstacles. Furthermore, human movements are predicted using a data-driven approach for proactive avoidance. A cost function is defined which measures different aspects that affect the comfort and predictability of human co-workers (e.g., human response time, joint jerk). This cost function is then minimized during human-robot interaction by the means of policy improvement through black-box optimization to generate robot trajectories that adapt to human preferences and avoid obstacles. User studies are performed to evaluate the trust and comfort of human co-workers when working with the robot. In addition, the studies are also extended to various scenarios and different users to analyze the task transferability. This improves the learning performance when switching to a new task or the robot has to adapt to a different co-worker.

5.
Sci Rep ; 8(1): 5583, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615692

RESUMO

Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.


Assuntos
Braço/fisiologia , Modelos Biológicos , Movimento , Adulto , Feminino , Humanos , Masculino , Postura
6.
Front Robot AI ; 5: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500914

RESUMO

Robots collaborating naturally with a human partner in a confined workspace need to understand and predict human motions. For understanding, a model-based approach is required as the human motor control system relies on the biomechanical properties to control and execute actions. The model-based control models explain human motions descriptively, which in turn enables predicting and analyzing human movement behaviors. In motor control, reaching motions are framed as an optimization problem. However, different optimality criteria predict disparate motion behavior. Therefore, the inverse problem-finding the optimality criterion from a given arm motion trajectory-is not unique. This paper implements an inverse optimal control (IOC) approach to determine the combination of cost functions that governs a motion execution. The results indicate that reaching motions depend on a trade-off between kinematics and dynamics related cost functions. However, the computational efficiency is not sufficient for online prediction to be utilized for HRI. In order to predict human reaching motions with high efficiency and accuracy, we combine the IOC approach with a probabilistic movement primitives formulation. This hybrid model allows an online-capable prediction while taking into account motor variability and the interpersonal differences. The proposed framework affords a descriptive and a generative model of human reaching motions which can be effectively utilized online for human-in-the-loop robot control and task execution.

7.
Int J Intell Robot Appl ; 1(4): 429-441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250589

RESUMO

This paper presents a method to localize a robot in a global coordinate frame based on a sparse 2D map containing outlines of building and road network information and no location prior information. Its input is a single 3D laser scan of the surroundings of the robot. The approach extends the generic chamfer matching template matching technique from image processing by including visibility analysis in the cost function. Thus, the observed building planes are matched to the expected view of the corresponding map section instead of to the entire map, which makes a more accurate matching possible. Since this formulation operates on generic edge maps from visual sensors, the matching formulation can be expected to generalize to other input data, e.g., from monocular or stereo cameras. The method is evaluated on two large datasets collected in different real-world urban settings and compared to a baseline method from literature and to the standard chamfer matching approach, where it shows considerable performance benefits, as well as the feasibility of global localization based on sparse building outline data.

8.
PLoS One ; 11(12): e0167021, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936015

RESUMO

Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.


Assuntos
Inteligência Artificial , Simulação por Computador , Locomoção , Robótica/métodos , Coleta de Dados/métodos , Humanos , Modelos Teóricos , Movimento (Física) , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...