Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 132: 102579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331544

RESUMO

A bloom of Karenia papilionacea that occurred along the Delaware coast in late summer of 2007 was the first Karenia bloom reported on the Delmarva Peninsula (Delaware, Maryland, and Virginia, USA). Limited spatial and temporal monitoring conducted by state agencies and citizen science groups since 2007 have documented that several Karenia species are an annual component of the coastal phytoplankton community along the Delmarva Peninsula, often present at background to low concentrations (100 to 10,000 cells L-1). Blooms of Karenia (> 105 cells L-1) occurred in 2010, 2016, 2018, and 2019 in different areas along the Delmarva Peninsula coast. In late summer and early autumn of 2017, the lower Chesapeake Bay experienced a K. papilionacea bloom, the first recorded in Bay waters. Blooms typically occurred summer into autumn but were not monospecific; rather, they were dominated by either K. mikimotoi or K. papilionacea, with K. selliformis, K. brevis-like cells, and an undescribed Karenia species also present. Cell concentrations during these mid-Atlantic Karenia spp. blooms equalled concentrations reported for other Karenia blooms. However, the negative impacts to environmental and human health often associated with Karenia red tides were not observed. The data compiled here report on the presence of multiple Karenia species in coastal waters of the Delmarva Peninsula detected through routine monitoring and opportunistic sampling conducted between 2007 and 2022, as well as findings from research cruises undertaken in 2018 and 2019. These data should be used as a baseline for future phytoplankton community analyses supporting coastal HAB monitoring programs.


Assuntos
Dinoflagellida , Humanos , Proliferação Nociva de Algas , Fitoplâncton , Virginia , Previsões
2.
J Phycol ; 59(4): 658-680, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36964950

RESUMO

Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Estados Unidos , Humanos , Toxinas Marinhas , Ácido Okadáico , Frutos do Mar/análise
3.
J Phycol ; 56(2): 404-424, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926032

RESUMO

Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a "small Dinophysis sp." that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.


Assuntos
Dinoflagellida , Toxinas Marinhas , Dinoflagellida/genética , Golfo do México , Mar Mediterrâneo , Mid-Atlantic Region
4.
Harmful Algae ; 75: 45-56, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29778225

RESUMO

Benthic dinoflagellates of the toxigenic genus Coolia Meunier (Dinophyceae) are known to have a global distribution in both tropical and temperate waters. The type species, C. monotis, has been reported from the Mediterranean Sea, the NE Atlantic and from Rhode Island, USA in the NW Atlantic, whereas other species in the genus have been reported from tropical locations. Coolia cells were observed in algal drift samples collected at seven sites in Nova Scotia, Canada. Clonal isolates were established from four of these locations and identified with light and scanning electron microscopy, then confirmed with genetic sequencing to be C. monotis. This is the first record of this species in Nova Scotia. The isolates were established and incubated at 18 °C under a 14:10 L:D photoperiod with an approximate photon flux density of 50-60 µmol m-2 s-1. Growth experiments using an isolate from Johnston Harbour (CMJH) were carried out at temperatures ranging from 5 to 30 °C under the same photoperiod with an approximate photon flux density of 45-50 µmol m-2 s-1. Cells tolerated temperatures from 5 to 25 °C with optimum growth and mucilage aggregate production between 15 and 20 °C. Methanol extracts of this isolate examined by Liquid Chromatography-Mass Spectrometry (LC-MS) did not show the presence of the previously reported cooliatoxin. Toxic effects were assayed using two zebrafish bioassays, the Fish Embryo Toxicity (FET) assay and the General Behaviour and Toxicity (GBT) assay. The results of this study demonstrate a lack of toxicity in C. monotis from Nova Scotia, as has been reported for other genetically-confirmed isolates of this species. Conditions in which cell growth that could potentially degrade water quality and provide substrate and dispersal mechanisms for other harmful microorganisms via mucilage production are indicated.


Assuntos
Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Animais , Cromatografia Líquida , Dinoflagellida/isolamento & purificação , Embrião não Mamífero/efeitos dos fármacos , Genes de Protozoários , Genes de RNAr , Espectrometria de Massas , Nova Escócia , Testes de Toxicidade , Peixe-Zebra
5.
Environ Health Perspect ; 114(10): 1502-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17035133

RESUMO

BACKGROUND: From January 2002 to May 2004, 28 puffer fish poisoning (PFP) cases in Florida, New Jersey, Virginia, and New York were linked to the Indian River Lagoon (IRL) in Florida. Saxitoxins (STXs) of unknown source were first identified in fillet remnants from a New Jersey PFP case in 2002. METHODS: We used the standard mouse bioassay (MBA), receptor binding assay (RBA), mouse neuroblastoma cytotoxicity assay (MNCA), Ridascreen ELISA, MIST Alert assay, HPLC, and liquid chromatography-mass spectrometry (LC-MS) to determine the presence of STX, decarbamoyl STX (dc-STX), and N-sulfocarbamoyl (B1) toxin in puffer fish tissues, clonal cultures, and natural bloom samples of Pyrodinium bahamense from the IRL. RESULTS: We found STXs in 516 IRL southern (Sphoeroides nephelus), checkered (Sphoeroides testudineus), and bandtail (Sphoeroides spengleri) puffer fish. During 36 months of monitoring, we detected STXs in skin, muscle, and viscera, with concentrations up to 22,104 microg STX equivalents (eq)/100 g tissue (action level, 80 microg STX eq/100 g tissue) in ovaries. Puffer fish tissues, clonal cultures, and natural bloom samples of P. bahamense from the IRL tested toxic in the MBA, RBA, MNCA, Ridascreen ELISA, and MIST Alert assay and positive for STX, dc-STX, and B1 toxin by HPLC and LC-MS. Skin mucus of IRL southern puffer fish captive for 1-year was highly toxic compared to Florida Gulf coast puffer fish. Therefore, we confirm puffer fish to be a hazardous reservoir of STXs in Florida's marine waters and implicate the dinoflagellate P. bahamense as the putative toxin source. CONCLUSIONS: Associated with fatal paralytic shellfish poisoning (PSP) in the Pacific but not known to be toxic in the western Atlantic, P. bahamense is an emerging public health threat. We propose characterizing this food poisoning syndrome as saxitoxin puffer fish poisoning (SPFP) to distinguish it from PFP, which is traditionally associated with tetrodotoxin, and from PSP caused by STXs in shellfish.


Assuntos
Dinoflagellida/química , Intoxicação/epidemiologia , Saxitoxina/intoxicação , Takifugu , Animais , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Humanos , Toxinas Marinhas/intoxicação , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...