Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(19): 8391-8397, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38682586

RESUMO

A method is proposed to estimate the energetic and entropic effects of spins of neighbouring molecules on the spin transition of a mononuclear spin crossover (SCO) complex in a molecular crystal. Density functional theory (DFT) methods have been used to model the SCO material [FeII(Lnpdtz)2(NCS)2] (Lnpdtz = 2-naphthyl-5-pyridyl-1,2,4-thiadiazole) exhibiting numerous π-π interactions using a 2D arrangement of 15 molecules. The modelling considers only the effects in the crystallographical ac plane with a particularly pronounced stacking but paves the way for future work with 3D arrangements which are computational much more costly. It involves the optimisation and normal mode calculation of the molecules in a rigid matrix of both low-spin (LS) and high-spin (HS) neighbours. This procedure has been used to calculate the previously defined cooperativity parameter Hcoop (S. Rackwitz, W. Klopper, V. Schünemann and J. A. Wolny, Phys. Chem. Chem. Phys., 2013, 15, 15450). For [FeII(Lnpdtz)2(NCS)] we obtain Hcoop = 11 kJ mol-1, a value which is comparable to those found for 3D polynuclear spin crossover materials. A normal mode analysis of the optimised centrally located molecule indicates that the vibrational entropy of the spin transition is somewhat higher (5 J K-1 mol-1) for the LS to HS transition in the LS matrix than in the HS one. The calculations show that the interactions with the neighbours influence the low-frequency modes with wave numbers <65-70 cm-1. These cause the main difference in the vibrational entropy of the spin transition for the vicinity of high- and low-spin molecules. Furthermore, a deformation of the coordination sphere of the central molecule is observed when the spins of the surrounding centres are switched. This deformation is accompanied by a change in the equatorial Fe-N bond lengths.

2.
Nanoscale Adv ; 6(7): 1837-1846, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545290

RESUMO

The 16e square-planar bis-thiolato-Au(iii) complexes [AuIII(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)2][NBu4] (Au-1) and [AuIII(4-methyl-1,2-benzenedithiolato)2][NBu4] (Au-2) have been synthesized and fully characterized. Au-1 and Au-2 were encapsulated in the symmetrical triblock copolymer poloxamer (Pluronic®) P123 containing blocks of poly(ethylene oxide) and poly(propylene oxide), giving micelles AuMs-1 and AuMs-2. High electron flux in scanning transmission electron microscopy (STEM) was used to generate single gold atoms and gold nanocrystals on B/S-doped graphitic surfaces, or S-doped amorphous carbon surfaces from AuMs-1 and AuMs-2, respectively. Electron energy loss spectroscopy (EELS) data suggested strong interactions of gold atoms/nanocrystals with boron in the B/S-doped graphitic matrix. Density-functional theory (DFT) calculations, also supported the experimental findings, pointing towards strong Au-B bonds, depending on the charge on the Au-(B-graphene) fragment and the presence of further defects in the graphene lattice.

3.
J Inorg Biochem ; 246: 112281, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37352657

RESUMO

The nitrophorins (NPs) comprise an unusual group of heme proteins with stable ferric heme iron nitric oxide (Fe-NO) complexes. They are found in the salivary glands of the blood-sucking kissing bug Rhodnius prolixus, which uses the NPs to transport the highly reactive signaling molecule NO. Nuclear resonance vibrational spectroscopy (NRVS) of both isoform NP2 and a mutant NP2(Leu132Val) show, after addition of NO, a strong structured vibrational band at around 600 cm-1, which is due to modes with significant Fe-NO bending and stretching contribution. Based on a hybrid calculation method, which uses density functional theory and molecular mechanics, it is demonstrated that protonation of the heme carboxyl groups does influence both the vibrational properties of the Fe-NO entity and its electronic ground state. Moreover, heme protonation causes a significant increase of the gap between the highest occupied and lowest unoccupied molecular orbital by almost one order of magnitude leading to a stabilization of the Fe-NO bond.


Assuntos
Hemeproteínas , Rhodnius , Animais , Heme/química , Proteínas de Transporte/metabolismo , Óxido Nítrico/metabolismo , Proteínas e Peptídeos Salivares , Hemeproteínas/química , Ferro/química , Rhodnius/química , Rhodnius/metabolismo
5.
Dalton Trans ; 51(42): 16070-16081, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043856

RESUMO

We have studied activation of the methyl C-H bonds in the cyclopentadienyl ligands of half-sandwich Rh(III) complexes [η5-CpXRh(N,N')Cl]+ by observing the dependence of sequential H/D exchange on variations in CpX = Cp* (complexes 1 and 2), Me4PhCp (CpXPh, 3) or Me4PhPhCp (CpXPhPh, 4), and chelated ligand N,N' (bpy, 1; phen, 2-4). H/D exchange was fastest in d4-MeOD (t1/2 = 10 min, 37 °C, complex 1), no H/D exchange was observed in DMSO/D2O, and d4-MeOD enhanced the rate in CD3CN. The proposed Rh(I)-fulvene intermediate was trapped by [4 + 2] Diels-Alder reactions with conjugated dienes and characterized. The Rh(I) oxidation state was confirmed by X-ray photoelectron spectroscopy (XPS). Influence of solvent on the mechanisms of activation and Diels-Alder adduct formation was modelled using DFT calculations with the CAM-B3LYP functional and CEP-31 g basis set, and influence on the reaction profile of the dimiine ligand and phenyl substituent using the larger qzvp basis set. The Rh(III)-OH intemediate is stabilised by H-bonding with methanol and a Cp* CH3 hydrogen. The Rh(I)(Me4fulvene) species, stabilised by interaction of methanol with a coordinated water, again by two H-bonds H2O-HOMe (1.49 Å) and fulvene CH2 (1.94 Å), arises from synchronous transfer of the methanol OH proton to a Rh(III)-OH ligand and Cp* methyl hydrogen to the methanol oxygen. Additionally, the observed trend in catalytic activity for complexes 1-4 was reproduced by DFT calculations. These complexes form a novel class of catalytic molecular motors with a tunable rate of operation that can be stalled in a given state. They provide a basis for elucidation of the effects of ligand design on the contributions of electronic, rotational and vibrational energies to each step in the reaction pathway at the atomic level, consideration of which will enhance the design principles for the next generation of molecular machines.

7.
Faraday Discuss ; 234(0): 264-283, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156974

RESUMO

Transition metal ions have a unique ability to organise and control the steric and electronic effects around a substrate in the active site of a catalyst. We consider half-sandwich Ru(II) (Noyori-type) and Os(II) sulfonyldiamine 16-electron active catalysts [Ru/Os(η6-p-cymene)(TsDPEN-H2)], where TsDPEN is N-tosyl-1,2-diphenylethylenediamine containing S,S or R,R chiral centres, which catalyse the highly efficient asymmetric transfer hydrogenation of aromatic ketones to chiral alcohols using formic acid as a hydride source. We discuss the recognition of the prochiral ketone acetophenone by the catalyst, the protonation of a ligand NH and transfer of hydride from formate to the metal, subsequent transfer of hydride to one enantiotopic face of the ketone, followed by proton transfer from metal-bound NH2, and regeneration of the catalyst. Our DFT calculations illustrate the role of the two chiral carbons on the N,N-chelated sulfonyldiamine ligand, the axial chirality of the π-bonded p-cymene arene, and the chirality of the metal centre. We discuss new features of the mechanism, including how a change in metal chirality of the hydride intermediate dramatically switches p-cymene coordination from η6 to η2. Moreover, the calculations suggest a step-wise mechanism involving substrate docking to the bound amine NH2 followed by hydride transfer prior to protonation of the O-atom of acetophenone and release of the enantio-pure alcohol. This implies that formation and stability of the M-H hydride intermediate is highly dependent on the presence of the protonated amine ligand. The Os(II) catalyst is more stable than the Ru(II) analogue, and these studies illustrate the subtle differences in mechanistic behaviour between these 4d6 and 5d6 second-row and third-row transition metal congeners in group 8 of the periodic table.


Assuntos
Acetofenonas , Cetonas , Catálise , Teoria da Densidade Funcional , Hidrogenação , Cetonas/química , Ligantes
8.
J Phys Chem Lett ; 12(12): 3240-3245, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764073

RESUMO

Phonon modes play a vital role in the cooperative phenomenon of light-induced spin transitions in spin crossover (SCO) molecular complexes. Although the cooperative vibrations, which occur over several hundreds of picoseconds to nanoseconds after photoexcitation, are understood to play a crucial role in this phase transition, they have not been precisely identified. Therefore, we have performed a novel optical laser pump-nuclear resonance probe experiment to identify the Fe-projected vibrational density of states (pDOS) during the first few nanoseconds after laser excitation of the mononuclear Fe(II) SCO complex [Fe(PM-BiA)2(NCS)2]. Evaluation of the so obtained nanosecond-resolved pDOS yields an excitation of ∼8% of the total volume of the complex from the low-spin to high-spin state. Density functional theory calculations allow simulation of the observed changes in the pDOS and thus identification of the transient inter- and intramolecular vibrational modes at nanosecond time scales.

9.
J Phys Chem Lett ; 12(1): 658-662, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393303

RESUMO

[(Pentamethylcyclopentadienyl)Rh(III)(bipyridine)(chloride)]+ (Cp*Rh-Cl) undergoes sequential deuteriation of its 15 Cp* CH groups in polar deuterated solvents. Vibrational spectra of H14-Cp*Rh-Cl and D14-Cp*Rh-Cl were captured via inelastic neutron spectroscopy (INS) and assigned using density functional theory (DFT) phonon calculations. These calculations were precisely weighted to the spectrometer's neutronic response. The Cp* ring behaves as a moving carousel, bringing each CH3 close to the Rh-OH/D center where proton abstraction occurs. Vibrations relevant for carousel movement and proximal positioning for H transfer were identified. DFT modeling uncovered changes in vibrations along the reaction path, involving a Rh(I)-fulvene intermediate. Vibronic energy contributions are large across the entire transition. Remarkably, they amount to over a 400-fold increase in the proton transfer rate. The inclusion of vibrational degrees of freedom could be applied more widely to catalysts and molecular machines to harness the energetics of these vibrations and increase their effective rates of operation.

10.
Chem Commun (Camb) ; 57(1): 69-72, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337460

RESUMO

The stable complex [bis(toluene-3,4-dithiolato)copper(iii)][NEt3H] has been synthesised and characterised as a square-planar Cu(iii) complex by X-ray photoelectron spectroscopy, cyclic voltammetry and DFT calculations. Intriguingly, when fragmented in FTICR-MS, an unusual [(toluene-3,4-dithiolate)Cu(iii)(peroxide)]- complex is formed by reaction with oxygen. Natural 1,2-dithiolenes known to bind molybdenum might stabilise Cu(iii) in vivo.

11.
J Phys Condens Matter ; 33(3)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32679572

RESUMO

The vibrational dynamics of the iron centres in 1D and 3D spin crossover Fe(II) 4-alkyl-urea triazole chains have been investigated by synchrotron based nuclear inelastic scattering. For the 1D system, the partial density of phonon states has been modelled with density functional theory methods. Furthermore, spin dependent iron ligand distances and vibrational modes were obtained. The previously introduced intramolecular cooperativity parameterHcoop(Rackwitzet al, Phys. Chem. Chem. Phys. 2013,15,15450) has been determined to -31 kJ mol-1for [Fe(n-Prtrzu)3(tosylate)2] and to +27 kJ mol-1for [Fe(n-Prtrzu)3(BF4)2]. The change of sign inHcoopis in line with the incomplete and gradual character of the spin transition for the former as well as with the sharp transition for the latter reported previously (Rentschler and von Malotki, Inorg. Chem., Act. 2008,361,3646). This effect can be ascribed to the networks of intramolecular interactions in the second coordination sphere of the polymer chains, depending on the spin state of the iron centres. In addition, we observe a decreased coupling and coherence when comparing the system which displays a sharp spin transition to the system with an incomplete soft transition by analyzing molecular modes involving a movement of the iron centres.

12.
Chemistry ; 26(63): 14419-14434, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32678463

RESUMO

Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.

13.
Angew Chem Int Ed Engl ; 59(23): 8818-8822, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32181552

RESUMO

Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) using the Mössbauer isotope 161 Dy has been employed for the first time to study the vibrational properties of a single-molecule magnet (SMM) incorporating DyIII , namely [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O ⋅2 EtOH. The experimental partial phonon density of states (pDOS), which includes all vibrational modes involving a displacement of the DyIII ion, was reproduced by means of simulations using density functional theory (DFT), enabling the assignment of all intramolecular vibrational modes. This study proves that 161 Dy NRVS is a powerful experimental tool with significant potential to help to clarify the role of phonons in SMMs.

14.
J Am Chem Soc ; 141(47): 18759-18770, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31687818

RESUMO

Treatment of Fe[BF4]2·6H2O with 4,6-di(pyrazol-1-yl)-1H-pyrimid-2-one (HL1) or 4,6-di(4-methylpyrazol-1-yl)-1H-pyrimid-2-one (HL2) affords solvated crystals of [{FeIII(OH2)6}⊂FeII8(µ-L)12][BF4]7 (1, HL = HL1; 2, HL = HL2). The centrosymmetric complexes contain a cubic arrangement of iron(II) centers, with bis-bidentate [L]- ligands bridging the edges of the cube. The encapsulated [Fe(OH2)6]3+ moiety templates the assembly through 12 O-H···O hydrogen bonds to the [L]- hydroxylate groups. All four unique iron(II) ions in the cages are crystallographically high-spin at 250 K, but they undergo a gradual high → low spin-crossover on cooling, which is predominantly centered on one iron(II) site and its symmetry-related congener. This was confirmed by magnetic susceptibility data, light-induced excited spin state trapping (LIESST) effect measurements, and, for 1, Mössbauer spectroscopy and diffuse reflectance data. The clusters are stable in MeCN solution, and 1 remains high-spin above 240 K in that solvent. The cubane assembly was not obtained from reactions using other iron(II) salts or 4,6-di(pyrazol-1-yl)pyrimidine ligands, highlighting the importance of hydrogen bonding in templating the cubane assembly.

15.
Dalton Trans ; 48(41): 15625-15634, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31418431

RESUMO

Nuclear inelastic scattering of synchrotron radiation has been used to determine the phonon density of vibrational states (pDOS) for the high-spin and low-spin phases of the hydrated and dehydrated isomer of the spin crossover polymer [Fe(pyrazine)][Pt(CN)4]. Density functional theory calculations have been performed for molecular models of the 3D polymeric system. The models contain 15 Fe(ii)/Zn(ii) centres and allowed the assignment of the observed bands to the corresponding vibrational modes. Thermodynamic parameters like the mean force constant and the vibrational entropy but also sound velocities of the molecular lattices in both spin states have been derived from the pDOS. Modelling of the low-spin and high-spin centres in the environment or matrix of different spins has revealed the enthalpic and entropic components of the intramolecular cooperativity. In contrast to the 1D spin crossover systems (Rackwitz, et al., Phys. Chem. Chem. Phys., 2013, 15, 15450) based on the rigid 1,2,4-triazole derivatives the distortion of the low-spin iron Fe(ii) centre by the matrix of high-spin Fe(ii) (modelled as Zn(ii)) occurs only in two dimensions, defined by the [M(CN)4]2- sheets, rather than concerning all six Fe-N bonds, as in 1D systems. The enthalpic intramolecular cooperativity has been determined to be 15 kJ mol-1 which is lower than that in 1D systems (20-30 kJ mol-1). Yet, the entropic contribution stabilizes the low-spin state in a low-spin matrix, a behaviour which is opposite to what was found for the 1D systems.

16.
Angew Chem Int Ed Engl ; 58(31): 10486-10492, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31179591

RESUMO

Fe-N-C catalysts are very promising materials for fuel cells and metal-air batteries. This work gives fundamental insights into the structural composition of an Fe-N-C catalyst and highlights the importance of an in-depth characterization. By nuclear- and electron-resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α-iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe-N-C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end-on bonded oxygen as one of the axial ligands.

17.
Dalton Trans ; 48(26): 9564-9569, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30951079

RESUMO

Iron oxide nano-crystals 0.1-1.1 µm in diameter were generated on sulfur-doped amorphous carbon surfaces by electron beam irradiation of the novel 13e- high-spin complex [Fe(4-methyl-1,2-benzenedithiolate)2][NHEt3] encapsulated in a triblock copolymer. Possible relevance to iron nano-mineralization from Fe-S ferredoxin proteins and iron dysregulation in neurological disorders is discussed.

19.
Angew Chem Int Ed Engl ; 58(11): 3444-3449, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30548520

RESUMO

Time-domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161 Dy has been used to investigate the magnetic properties of a DyIII -based single-molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O⋅2 EtOH is with B0 =582.3(5) T significantly larger than that of the free-ion DyIII with a 6 H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161 Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy-containing compounds.

20.
Inorg Chem ; 58(1): 769-784, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576128

RESUMO

The nitrosylation of biological Fe/S clusters to give protein-bound dinitrosyl iron complexes (DNICs) is physiologically important. Biomimetic studies on the reaction of synthetic [2Fe-2S] clusters with NO have so far been limited to diferric model complexes. This work now compares the nitrosylation of [2Fe-2S] clusters with SN- or NN-chelating benzimidazolate/thiophenolate or bis(benzimidazolate) capping ligands in their diferric (12- and 22-) and mixed-valent (FeIIFeIII, 13-, and 23-) forms. Furthermore, the effect of protonation of the imidazole part of the SN ligand has been probed on both the nitrosylation reaction and properties of the resulting DNIC. The reaction of 12- and 22- with 4 equiv NO yields the new anionic {Fe(NO)2}9 DNICs 3- and 4-, respectively, which have been comprehensively characterized, including X-ray crystallography of their PPN+ salts. Nitrosylation of mixed-valent [2Fe-2S] clusters 13- and 23- first leads to slow oxidation to the corresponding diferric congeners, followed by core degradation and DNIC formation. In the case of 23-, a second diferric intermediate very similar to 22- is detected by UV-vis spectroscopy, but could not be further identified. Nitrosylation of 1H2 gives the neutral, N-protonated DNIC 3H, and acid/base titrations show that interconversion between 3- and 3H is reversible. Peripheral ligand protonation leads to a blue shift of the NO stretching vibrations by about 23 cm-1 and a significant shift of the reduction potential to less negative values (Δ E1/2 = 0.26 V), but no effect on 57Fe Mössbauer parameters is observed. Density functional theory calculations based on the structure of 3- indicate that the electronic ground-state properties of 3- and 3H are similar, although the NO(π*) → Fe 3d π-donation is slightly increased and π-backbonding is slightly decreased upon protonation. As a result, protonation has a significant effect on the NO stretching frequencies, but only minor effects on the Fe-(NO)2 modes. This is confirmed by nuclear inelastic scattering of 3- and 3H, which shows no clear influence of protonation on the energy of the Fe-(NO)2 bending and stretching modes occurring in the range 400-600 cm-1, but characteristic changes below 350 cm-1 that reflect perturbation of free rotary motion of the thiophenolate and benzimidazole ring systems of the capping ligand after N-protonation. These findings add to the understanding of [2Fe-2S] cluster nitrosylation and will help to identify DNICs resulting from the reaction of NO with Fe/S cofactors featuring alternative, proton-responsive histidine ligands such as the Rieske and mitoNEET [2Fe-2S] clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...