Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566104

RESUMO

BACKGROUND: Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. METHODS: Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. RESULTS: When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-ß, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. CONCLUSIONS: Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Metilação de DNA , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , DNA/metabolismo
2.
Oncogenesis ; 12(1): 44, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666817

RESUMO

Sex and gender disparities in bladder cancer have long been a subject of interest to the cancer research community, wherein men have a 4 times higher incidence rate than women, and female patients often present with higher-grade disease and experience worse outcomes. Despite the known differences in disease incidence and clinical outcomes between male and female bladder cancer patients, clinical management remains the same. In this review, we critically analyze studies that report on the biological differences between men and women and evaluate how these differences contribute to sex and gender disparities in bladder cancer. Distinct characteristics of the male and female immune systems, differences in circulating hormone levels and hormone receptor expression, and different genetic and epigenetic alterations are major biological factors that all likely contribute to disparate incidence rates and outcomes for male and female bladder cancer patients. Future preclinical and clinical studies in this area should employ experimental approaches that account for and consider sex and gender disparities in bladder cancer, thereby facilitating the development of precision medicine for the effective treatment of bladder cancer in all patients.

3.
Metabolites ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837903

RESUMO

Dihydrotestosterone (DHT) and testosterone (T), which mediate androgen receptor nuclear translocation and target gene transcription, are crucial androgens and essential molecular triggers required for the proliferation and survival of prostate cancer cells. Therefore, androgen metabolism is commonly targeted in the treatment of prostate cancer. Using a high-pressure liquid chromatographic assay with tandem mass spectral detection, we determined the serum levels of metabolites produced during DHT/T biosynthesis in African American (AA) and European American (EA) men with localized, therapy naïve prostate cancer. Serum progesterone and related metabolites were significantly lower in AA men than in EA men, and these differences were associated with rapid disease progression. Multivariate analysis revealed significant differences between a subset of intermediate androgen metabolites between AA and EA men and between men with <=3 + 4 and >=4 + 3 Gleason score disease. AA men have a significantly higher frequency of single nucleotide polymorphisms in CYP11B1 and CYP11B2, enzymes that regulate corticosterone-aldosterone conversion. Finally, higher levels of T and pregnenolone were associated with a lower risk of progression-free survival only in AA men. This work provides new insight into androgen metabolism and racial disparities in prostate cancer by presenting evidence of dysregulated androgen biosynthesis in therapy naïve disease that correlates with clinical variables.

4.
Cancer Res Commun ; 2(10): 1129-1143, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36275363

RESUMO

STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Antígenos Nucleares/genética , Neoplasias da Bexiga Urinária/genética , Segregação de Cromossomos , Fenótipo , Músculos/metabolismo
5.
Cell Death Discov ; 8(1): 85, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35220396

RESUMO

Ewing sarcoma is the second most common bone malignancy in children and adolescents. In recent years, a large body of evidence has emerged that suggests Ewing tumors harbor large amounts of replication stress (RS). CDC7, also known as DDK (DBF4-dependent kinase), is a serine/threonine kinase that is involved in a diverse array of cellular functions including the regulation of DNA replication initiation and activation of the RS response. Due to DDK's diverse roles during replication, coupled with the fact that there is an increased level of RS within Ewing tumors, we hypothesized that Ewing sarcoma cells would be particularly vulnerable to DDK inhibition. Here, we report that DDK inhibition resulted a significant reduction in cell viability and the induction of apoptosis, specifically in Ewing sarcoma cells. Treatment with DDK inhibitors dramatically reduced the rate of replication, prolonged S-phase, and led to a pronounced increase in phospho-CDC2 (Y15), indicating delay of mitotic entry. The induction of cell death corresponded to mitotic exit and G1 entry, suggesting improper mitotic progression. In accordance with this, we find that DDK inhibition caused premature mitotic entry resulting in mitotic abnormalities such as anaphase bridges, lagging chromosomes, and cells with >2 poles in Ewing sarcoma cells. This abnormal progression through mitosis resulted in mitotic catastrophe as evidenced by the formation of micronuclei and induction of DNA damage. Together, these findings suggest that DDK activity is required for the faithful and timely completion of DNA replication in Ewing cells and that DDK inhibition may present a viable therapeutic strategy for the treatment of Ewing sarcoma.

6.
Am J Clin Exp Urol ; 9(6): 416-434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993263

RESUMO

The evolving paradigm of the molecular classification of bladder cancer requires models that represent the classifications with less heterogeneity. Robust transcriptome based molecular classifications are essential to address tumor heterogeneity. Patient derived models (PDMs) are a powerful preclinical tool to study specific tumor compartments. We tested if the consensus molecular subtype analysis was applicable to PDMs and evaluated the tumor compartment each model represents. PDMs derived from surgical specimens were established as xenografts (PDX), organoids (PDO), and spheroids (PDS). The surgical specimens and PDMs were molecularly characterized by RNA sequencing. PDMs that were established in immune deficient mice or in vitro significantly downregulated transcripts related to the immune and stromal compartments compared to the surgical specimens. However, PDMs upregulate a patient-specific bladder cancer cell signal which allowed for analysis of cancer cell pathways independent of the tumor microenvironment. Based on transcriptomic signatures, PDMs are more similar to their surgical specimen than the model type; indicating that the PDMs retained unique features of the tumor from which the PDM was derived. When comparing models, PDX models were the most similar to the surgical specimen, while PDO and PDS models were most similar to each other. When the consensus molecular subtype classification system was applied to both the surgical samples and the three PDMs, good concordance was found between all samples indicating that this system of classification can be applied to PDO and PDS models. PDMs reduce tumor heterogeneity and allow analysis of tumor cells while maintaining the gene expression profile representative of the original tumor.

7.
Mol Cancer Res ; 19(2): 192-206, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020173

RESUMO

Ewing sarcoma is an aggressive pediatric tumor of the bone and soft tissue. The current standard of care is radiation and chemotherapy, and patients generally lack targeted therapies. One of the defining molecular features of this tumor type is the presence of significantly elevated levels of replication stress as compared with both normal cells and many other types of cancers, but the source of this stress is poorly understood. Tumors that harbor elevated levels of replication stress rely on the replication stress and DNA damage response pathways to retain viability. Understanding the source of the replication stress in Ewing sarcoma may reveal novel therapeutic targets. Ewing sarcomagenesis is complex, and in this review, we discuss the current state of our knowledge regarding elevated replication stress and the DNA damage response in Ewing sarcoma, one contributor to the disease process. We will also describe how these pathways are being successfully targeted therapeutically in other tumor types, and discuss possible novel, evidence-based therapeutic interventions in Ewing sarcoma. We hope that this consolidation will spark investigations that uncover new therapeutic targets and lead to the development of better treatment options for patients with Ewing sarcoma. IMPLICATIONS: This review uncovers new therapeutic targets in Ewing sarcoma and highlights replication stress as an exploitable vulnerability across multiple cancers.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Sarcoma de Ewing/genética , Humanos , Mutação
8.
Cell Cycle ; 18(17): 2055-2066, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318640

RESUMO

Intrinsic and/or acquired resistance to cisplatin is a significant obstacle in the treatment of muscle-invasive bladder cancer. p73, a p53 homolog and determinant of chemosensitivity, is rarely mutated in bladder cancer (BC). However p73 expression and therefore function can be repressed through epigenetic changes. In this study, we sought to identify DNA methylation status of p73, expression of TAp73 isoform, and their role in cisplatin sensitivity in BC. Primary tumor samples from 338 bladder cancer patients showed decreased TAp73 expression in MIBC compared to superficial BC. Low TAp73 protein expression was associated with shorter overall survival. To investigate if the loss of expression was methylation dependent, we utilized Illumina 450K methylation arrays to interrogate over 150 BC patient samples. We found 12 distinct CpGs in the p73 gene locus that were hypermethylated in tumors compared to adjacent normal tissues. Patients with high p73 promoter methylation specifically at CpG site cg07382920 had worse survival. In vitro, treatment with a DNA demethylating agent, decitabine (DAC), decreased TAp73 methylation and upregulated expression in both CR-T24 (cisplatin resistant T24 cells) and wild type T24 cells. Furthermore, treatment with DAC increased cisplatin response in wild type T24 and CR-T24. Our studies indicate that TAp73 expression and P1 promoter methylation, specifically at the cg073892920 site, may have prognostic and diagnostic value in MIBC. In the setting of P1 promoter hypermethylation, DAC could be used as a potentiating agent of cisplatin-based chemotherapy.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA/efeitos dos fármacos , Proteína Tumoral p73/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Proteínas de Ligação a DNA/genética , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
9.
Prostate ; 79(10): 1117-1124, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077420

RESUMO

BACKGROUND: African-American (AA) men tend to present with more aggressive prostate cancer (Gleason score >7) than European-American (EA) men. Vitamin D and its metabolites are implicated in prostate cancer biology with vitamin D deficiency, indicated by its metabolite levels in serum or plasma, usually observed in AA men. OBJECTIVE: To determine if 1, 25-dihydroxy vitamin D3 [1,25(OH)2 D] plasma levels in AA and EA prostate cancer patients alter the risk of having aggressive prostate cancer. DESIGN: Research subjects from the North Carolina-Louisiana Prostate Cancer Project (AA n = 435 and EA n = 532) were included. Plasma metabolites 1,25(OH)2 D and 25-hydroxyvitamin D3 [25(OH)D] were measured using liquid chromatography with tandem mass spectrophotometry. Research subjects were classified into low (Gleason sum < 7, stage T1-T2, and Prostate-specific antigen (PSA) < 9 ng/mL) or high (Gleason sum > 8 or Gleason sum = 7 with 4 + 3, or PSA > 20 ng/mL, or Gleason sum = 7 and stage T3-T4) aggressive disease. RESULTS: Research subjects in the second and third tertiles of plasma levels of 1, 25(OH)2 D had lower odds of high aggressive prostate cancer (AA [ORT2vsT1 : 0.66, 95%CI: 0.39-1.12; ORT3vsT1 : 0.83, 95%CI: 0.49-1.41] and EA [ORT2vsT1 : 0.68, 95%CI: 0.41-1.11; ORT3vsT1 : 0.67, 95%CI: 0.40-1.11]) compared with the first tertile, though confidence intervals included the null. Greater 1,25(OH)2 D/25(OH)D molar ratios were associated with lower odds of high aggressive prostate cancer more evidently in AA (ORQ4vsQ1 : 0.45, CI: 0.24-0.82) than in EA (ORQ4vsQ1 : 0.64, CI: 0.35-1.17) research subjects. CONCLUSIONS: The 1,25(OH)2 D/25(OH)D molar ratio was associated with decreased risk of high aggressive prostate cancer in AA men, and possibly in EA men. Further studies analyzing vitamin D polymorphisms, vitamin D binding protein levels, and prostatic levels of these metabolites may be useful. These studies may provide a better understanding of the vitamin D pathway and its biological role underlying health disparities in prostate cancer.


Assuntos
Calcitriol/sangue , Invasividade Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/sangue , Vitamina D/análogos & derivados , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Fatores de Risco , Vitamina D/sangue
10.
Cell Death Differ ; 26(10): 2100-2114, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30692641

RESUMO

Lysine-specific demethylase 6A (KDM6A) and members of the Switch/Sucrose Non-Fermentable (SWI/SNF) family are known to counteract the activity of Enhancer of Zeste Homolog 2 (EZH2), which is often overexpressed and is associated with poor prognosis in muscle-invasive bladder cancer. Here we provide evidence that alterations in chromatin modifying enzymes, including KDM6A and members of the SWI/SNF complex, are frequent in muscle-invasive bladder cancer. We exploit the loss of function mutations in KDM6A and SWI/SNF complex to make bladder cancer cells susceptible to EZH2-based epigenetic therapy that activates an immune response to drive tumor cell differentiation and death. We reveal a novel mechanism of action of EZH2 inhibition, alone and in combination with cisplatin, which induces immune signaling with the largest changes observed in interferon gamma (IFN-γ). This upregulation is a result of activated natural killer (NK) signaling as demonstrated by the increase in NK cell-associated genes MIP-1α, ICAM1, ICAM2, and CD86 in xenografts treated with EZH2 inhibitors. Conversely, EZH2 inhibition results in decreased expression of pluripotency markers, ALDH2 and CK5, and increased cell death. Our results reveal a novel sensitivity of muscle-invasive bladder cancer cells with KMD6A and SWI/SNF mutations to EZH2 inhibition alone and in combination with cisplatin. This sensitivity is mediated through increased NK cell-related signaling resulting in tumor cell differentiation and cell death.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Nus , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biomaterials ; 182: 114-126, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118979

RESUMO

At the intersection of the newly emerging fields of optoacoustic imaging and theranostic nanomedicine, promising clinical progress can be made in dismal prognosis of ovarian cancer. An acidic pH targeted wormhole mesoporous silica nanoparticle (V7-RUBY) was developed to serve as a novel tumor specific theranostic nanoparticle detectable using multispectral optoacoustic tomographic (MSOT) imaging. We report the synthesis of a small, < 40 nm, biocompatible asymmetric wormhole pore mesoporous silica core particle that has both large loading capacity and favorable release kinetics combined with tumor-specific targeting and gatekeeping. V7-RUBY exploits the acidic tumor microenvironment for tumor-specific targeting and tumor-specific release. In vitro, treatment with V7-RUBY containing either paclitaxel or carboplatin resulted in increased cell death at pH 6.6 in comparison to drug alone (p < 0.0001). In orthotopic ovarian xenograft mouse models, V7-RUBY containing IR780 was specifically detected within the tumor 7X and 4X higher than the liver and >10X higher than in the kidney using both multispectral optoacoustic tomography (MSOT) imaging with secondary confirmation using near infrared fluorescence imaging (p < 0.0004). The V7-RUBY system carrying a cargo of either contrast agent or an anti-neoplastic drug has the potential to become a theranostic nanoparticle which can improve both diagnosis and treatment of ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Carboplatina/administração & dosagem , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Dióxido de Silício/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/farmacocinética , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Técnicas Fotoacústicas/métodos , Porosidade , Nanomedicina Teranóstica/métodos , Tomografia/métodos , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...