Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641294

RESUMO

Polypropylene (PP) and polystyrene (PS) underwent a comprehensive investigation into their mechanical and chemical degradation through reactive molecular dynamics simulations. The simulations utilized the ReaxFF force field for CHO (carbon-hydrogen-oxygen) systems in the combustion branch. The study included equilibrium simulations to determine densities and melting temperatures, non-equilibrium simulations for stress-strain and Young moduli determination, mechanical cleaving to identify surface species resulting from material fragmentation, and shock compression simulations to elucidate chemical reactions activated by some external energy sources. The results indicate that material properties such as densities, phase transition temperatures, and Young moduli are accurately reproduced by the ReaxFF-CHO force field. The reactive dynamics analysis yielded crucial insights into the surface composition of fragmented polymers. Both polymers exhibited backbone breakage, leaving -CH2· and -CH·- radicals as terminals. PP demonstrated substantial fragmentation, while PS showed a tendency to develop crosslinks. A detailed analysis of chemical reactions resulting from increasing activation due to increasing value of compression pressure is presented and discussed.


Assuntos
Polipropilenos , Poliestirenos , Poliestirenos/química , Polipropilenos/química , Simulação de Dinâmica Molecular , Pressão , Modelos Químicos
2.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677880

RESUMO

Interaction of ß-D-glucopyranuronic acid (GlcA), N-acetyl-ß-D-glucosamine (GlcNAc), N-acetyl-ß-D-galactosamine (GalNAc) and two natural decameric glycosaminoglycans, hyaluronic acid (HA) and Chondroitin (Ch) with carboxylated carbon nanotubes, were studied using molecular dynamics simulations in a condensed phase. The force field used for carbohydrates was the GLYCAM-06j version, while functionalized carbon nanotubes (fCNT) were described using version two of the general amber force field. We found a series of significant differences in carbohydrate-fCNT adsorption strength depending on the monosaccharide molecule and protonation state of surface carboxyl groups. GlcNAc and GalNAc reveal a strong adsorption on fCNT with deprotonated carboxyl groups, and a slightly weaker adsorption on the fCNT with protonated carboxyl groups. On the contrary, GlcA weakly adsorbs on fCNT. The change in protonation state of surface carboxyl groups leads to the reversal orientation of GlcNAc and GalNAc in reference to the fCNT surface, while GlcA is not sensitive to that factor. Adsorption of decameric oligomers on the surface of fCNT weakens with the increasing number of monosaccharide units. Chondroitin adsorbs weaker than hyaluronic acid and incorporation of four Ch molecules leads to partial detachment of them from the fCNT surface. The glycan-fCNT interactions are strong enough to alter the conformation of carbohydrate backbone; the corresponding conformational changes act toward a more intensive contact of glycan with the fCNT surface. Structural and energetic features of the adsorption process suggest the CH-π interaction-driven mechanism.


Assuntos
Condroitina , Nanotubos de Carbono , Glicosaminoglicanos , Ácido Hialurônico , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Monossacarídeos , Ácidos Carboxílicos
3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614260

RESUMO

Due to their unique structure, poly(amidoamine) (PAMAM) dendrimers can bind active ingredients in two ways: inside the structure or on their surface. The location of drug molecules significantly impacts the kinetics of active substance release and the mechanism of internalization into the cell. This study focuses on the effect of the protonation degree of the G4PAMAM dendrimer and the anticancer drug 5-fluorouracil (5FU) on the efficiency of complex formation. The most favorable conditions for constructing the G4PAMAM-5FU complex are a low degree of protonation of the dendrimer molecule with the drug simultaneously present in a deprotonated form. The fluorine components in the XPS spectra confirm the formation of the stable complex. Through SAXS and DLS methods, a decrease in the dendrimer's molecular size resulting from protonation changes at alkaline conditions was demonstrated. The gradual closure of the dendrimer structure observed at high pH values makes it difficult for the 5FU molecules to migrate to the interior of the support structure, thereby promoting drug immobilization on the surface. The 1H NMR and DOSY spectra indicate that electrostatic interactions determine the complex formation process. Through MD simulations, the localization profile and the number of 5FU molecules forming the complex were visualized on an atomic scale.


Assuntos
Dendrímeros , Fluoruracila , Dendrímeros/química , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Molecules ; 27(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35956863

RESUMO

Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the genome, but the most representative is the telomeric region in which the CCCTAA sequences are repeated thousands of times. The ability to reverse folding/unfolding in response to pH change makes the above sequence and i-motif very promising components of nanomachines, extended DNA structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due to direct insights into the microscopic structure of the considered systems. We show that Amber force fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic partitioning of the folding process, which makes the transitions between various intermediates too time-consuming in atomistic force field representation. Application of coarse-grained force fields usually highly accelerates complex structural transitions. We, however, found that three of the most popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of effort to successfully solve these problems.


Assuntos
DNA , Simulação de Dinâmica Molecular , Citosina/química , DNA/química , Cinética , Telômero
5.
Biomater Adv ; 137: 212835, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929267

RESUMO

We found that carmustine can be stored in the carbon nanotube (CNT) interior for a long time due to hydrophobic interactions. The access of water to carmustine phase in the CNT interior can be controlled by the state of cytosine rich DNA fragments covalently bound to the CNT tips and to the presence of doxorubicin molecules intercalated within bundles of DNA fragments. More effective control of water access and subsequent decomposition of carmustine due to the contact with water was observed when some small amount of doxorubicin molecules cork the CNT ends. Our analysis shows that carmustine decomposition products naturally separate when decomposition occurs within the CNT. The alkylating agent, chloroethyl carbonium cation, spontaneously escapes from the CNT but the carbamylation agent, chloroethyl isocyanate, is still kept within the nanotube interior. The separation process and release of the alkylating agent needs uncorking the nanotube by doxorubicin molecules. The latter process is likely to occur spontaneously at acidic pH when intercalation of doxorubicin within the DNA fragments becomes ineffective. The features of the proposed molecular model, obtained from molecular dynamics simulations, can be beneficial in design of novel smart drugs carriers to a tumor microenvironment revealing the reduced extracellular pH.


Assuntos
Nanotubos de Carbono , Alquilantes , Carmustina , Citosina , DNA , Doxorrubicina/química , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Água/química , Abastecimento de Água
6.
J Chem Theory Comput ; 18(8): 5089-5107, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904547

RESUMO

Carbohydrates play an essential role in a large number of chemical and biochemical processes. High structural diversity and conformational heterogeneity make it problematic to link their measurable properties to molecular features. Molecular dynamics simulations carried out at the level of classical force fields are routinely applied to study the complex processes occurring in carbohydrate-containing systems, while the usefulness of such simulations relies on the accuracy of the underlying theoretical model. In this article, we present the coarse-grained force field dedicated to glucopyranose-based carbohydrates and compatible with the recent version of the Martini force field (v. 3.0). The parameterization was based on optimizing bonded and nonbonded parameters with a reference to the all-atom simulation results and the experimental data. Application of the newly developed coarse-grained carbohydrate model to oligosaccharides curdlan and cellulose displays spontaneous formation of aggregates of experimentally identified features. In contact with other biomolecules, the model is capable of recovering the protective effect of glucose monosaccharides on a lipid bilayer and correctly identifying the binding pockets in carbohydrate-binding proteins. The features of the newly proposed model make it an excellent candidate for further extensions, aimed at modeling more complex, functionalized, and biologically relevant carbohydrates.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Carboidratos , Bicamadas Lipídicas/química , Conformação Molecular
7.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445172

RESUMO

This works deals with analysis of properties of a carbon nanotube, the tips of which were functionalized by short cytosine-rich fragments of ssDNA. That object is aimed to work as a platform for storage and controlled release of doxorubicin in response to pH changes. We found that at neutral pH, doxorubicin molecules can be intercalated between the ssDNA fragments, and formation of such knots can effectively block other doxorubicin molecules, encapsulated in the nanotube interior, against release to the bulk. Because at the neutral pH, the ssDNA fragments are in form of random coils, the intercalation of doxorubicin is strong. At acidic pH, the ssDNA fragments undergo folding into i-motifs, and this leads to significant reduction of the interaction strength between doxorubicin and other components of the system. Thus, the drug molecules can be released to the bulk at acidic pH. The above conclusions concerning the storage/release mechanism of doxorubicin were drawn from the observation of molecular dynamics trajectories of the systems as well as from analysis of various components of pair interaction energies.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Citosina/análogos & derivados , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Nanotubos de Carbono/química , Antibióticos Antineoplásicos/química , DNA/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
8.
J Phys Chem B ; 125(21): 5526-5536, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34009989

RESUMO

In this work, we studied, using computational methods, the protonation reactions of telomeric DNA fragments being due to interaction with carboxylated carbon nanotubes. The applied computational methodology is divided into two stages. (i) Using classical molecular dynamics, we generated states in which carboxyl groups are brought to the vicinity of nitrogen atoms within the cytosine rings belonging to the DNA duplex. (ii) From these states, we selected two systems for systematic quantum chemical studies aimed at the analysis of proton-transfer reactions between the carboxyl groups and nitrogen atoms within the cytosine rings. Results of molecular dynamics calculations led to the conclusion that sidewall-functionalized carbon nanotubes deliver carboxyl groups slightly more effectively than the on-tip-functionalized ones. The latter can provide carboxyl groups in various arrangements and more diverse quality of approach of carboxyl groups to the cytosines; however, the differences between various arrangements of carboxyl groups are still not big. It was generally observed that narrow nanotubes can access the cytosine pocket easier than wider ones. Quantum chemical calculations led however to the conclusion that a direct proton transfer from the carboxyl group to the nitrogen atom within the cytosine ring is impossible under normal conditions. Precisely, we detected either very high activation barrier for the proton-transfer reaction or instability of the reaction product, i.e., its spontaneous decomposition toward reaction substrates.


Assuntos
Citosina , Nanotubos de Carbono , DNA , Simulação de Dinâmica Molecular , Telômero/genética
9.
Mol Pharm ; 18(1): 257-266, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325232

RESUMO

In this work, the combined effect of the amount of oxygen-containing groups on the carbon quantum dot (CQD) surface and the pH level on the interaction mechanism between an anticancer drug and a carrier has been studied. Molecular dynamics simulations of loading and release of doxorubicin (DOX) molecules on the CQD surface at pH = 7.4 and pH = 5 were carried out, followed by binding free energy calculations with steered molecular dynamics. The results indicate that the CQDs-DOX interaction strength increases with the surface coverage and pH, as well as that the electrostatic interaction between DOX and CQDs plays a significant role in the drug-loading process. This effect was partly attributed to the different surface orientations of the DOX molecular fragments. The obtained results provide the microscopic picture of DOX loading and release on/from the CQDs, which may be critical for the development of advanced CQD-based targeted drug delivery systems.


Assuntos
Adsorção/efeitos dos fármacos , Carbono/química , Doxorrubicina/química , Pontos Quânticos/química , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
10.
Pharmaceutics ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635253

RESUMO

The controlled delivery and release of drug molecules at specific targets increases the therapeutic efficacy of treatment. This paper presents a triple complex which is a new potential drug delivery system. Triple complex contains single-walled carbon nanotubes, Congo red, and doxorubicin. Nanotubes are built of a folded graphene layer providing a large surface for binding Congo red via "face-to-face" stacking which markedly increases the binding capacity of the carrier. Congo red is a compound that self-associates to form supramolecular ribbon-like structures, which are able to bind some drugs by intercalation. The nanotube-Congo red complex can bind the model drug doxorubicin. Thus, a new triple carrier system was obtained. The aim of this paper is to present studies on the controlled release of a model anticancer drug from a triple carrier system through pH changes. The specific aim of the study was to model the structure of the obtained experimental systems and to compare the changes in the average energy of interaction between its components induced by pH changes. The studies also aimed to compare the intensity of pH-dependent changes in hydrodynamic diameters of individual components of the triple carrier system. The effect of pH changes on the stability of the analyzed systems was examined using the molecular modeling method and dynamic light scattering. The decrease in pH influenced the structure and stability of the analyzed triple systems and ensured efficient drug release. The changes in hydrodynamic diameters of the obtained fractions were examined with the use of dynamic light scattering and were confirmed by computer simulation methods. The formulation presented in this paper shows potential for a therapeutic application owing to its high drug binding capacity and pH-dependent release. This ensures prolonged local action of the drug. The results reveal that the studied complex fulfills the basic requirements for its potential use as drug carrier, thus reducing side effects and enhancing pharmacological efficacy of drugs.

11.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443891

RESUMO

This work deals with molecular dynamics analysis of properties of systems composed of carbon nanotubes and short telomeric DNA strands able to fold into i-motif structures at slightly acidic pH conditions. The studies are focused on possible application of such constructs as pH-controlled drug delivery and release systems. We study two different approaches. The first assumes that folding/unfolding property of these DNA strands might realize a gate closing/opening mechanism with carbon nanotube as a container for drug molecules. The second approach assumes that these DNA strands can modulate the drug intercalating property as a function of pH. As a model drug molecule we used doxorubicin. We found that the first approach is impossible to realize because doxorubicin is not effectively locked in the nanotube interior by DNA oligonuceotides. The second approach is more promising though direct drug release was not observed in unbiased molecular dynamics simulations. However, by applying detailed analysis of pair interaction energies, mobilities and potential of mean force we can show that doxorubicin can be released when the DNA strands fold into i-motifs. Carbon nanotube in that latter case acts mainly as a carrier for active phase which is composed of DNA fragments able to fold into noncanonical tetraplexes (i-motif).


Assuntos
DNA/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Telômero/química , Citosina/química , Doxorrubicina/administração & dosagem , Motivos de Nucleotídeos , Oligonucleotídeos/química
12.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168928

RESUMO

This work deals with molecular dynamics simulations of systems composed of telomeric dsDNA fragments, iG, and functionalized carbon nanotubes, fCNT. The iG contains 90 nucleotides in total and in its middle part the noncanonical i-motif and G-quadruplex are formed. Two chiralities of the fCNT were used, i.e., (10,0) and (20,0) and these nanotubes were either on-tip functionalized by guanine containing functional groups or left without functionalization. We proposed a dedicated computational procedure, based on the replica exchange concept, for finding a thermodynamically optimal conformation of iG and fCNT without destroying the very fragile noncanonical parts of the iG. We found that iG forms a V-shape spatial structure with the noncanonical fragments located at the edge and the remaining dsDNA strands forming the arms of V letter. The optimal configuration of iG in reference to fCNT strongly depends on the on-tip functionalization of the fCNT. The carbon nanotube without functionalization moves freely between the dsDNA arms, while the presence of guanine residues leads to immobilization of the fCNT and preferential location of the nanotube tip near the junction between the dsDNA duplex and i-motif and G-quadruplex. We also studied how the presence of fCNT affects the stability of the i-motif at the neutral pH when the cytosine pairs are nonprotonated. We concluded that carbon nanotubes do not improve the stability of the spatial structure of i-motif also when it is a part of a bigger structure like the iG. Such an effect was described in literature in reference to carboxylated nanotubes. Our current results suggest that the stabilization of i-motif is most probably related to easy formation of semiprotonated cytosine pairs at neutral pH due to interaction with carboxylated carbon nanotubes.


Assuntos
DNA/química , Nanotubos de Carbono/química , Telômero/genética , Citosina/química , Quadruplex G , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Telômero/química , Termodinâmica
13.
J Phys Chem B ; 123(49): 10343-10353, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31735024

RESUMO

This work deals with molecular dynamics simulations of human telomeric i-motif DNA interacting with functionalized single-walled carbon nanotubes. We study two kinds of i-motifs differing by the protonation state of cytosines, i.e., unprotonated ones representative to neutral pH and with half of the cytosines protonated and representative to acidic conditions. These i-motifs interact with two kinds of carbon nanotubes differing mainly in chirality (diameter), i.e., (10, 0) and (20, 0). Additionally, these nanotubes were on-tip functionalized by amino groups or by guanine- containing residues. We found that protonated i-motif adsorbs strongly, although not specifically, on the nanotube surfaces with its 3' and 5' ends directed toward the surface and that adsorption does not affect the i-motif shape and hydrogen bonds existing between C:C+ pairs. The functional groups on the nanotube tips have minimal effect either on position of i-motif or on its binding strength. Unprotonated i-motif, in turn, deteriorates significantly during interaction with the nanotubes and its binding strength is rather high as well. We found that (10, 0) nanotubes destroy the i-motif shape faster than (20, 0). Moreover the i-motif either tries to wrap the nanotube or migrates to its tip and becomes immobilized due to interaction with guanine residue localized on the nanotube tip and attempts to incorporate its 3' end into the nanotube interior. No hydrogen bonds exist within the unprotonated i-motif prior to and after adsorption on the nanotube. Thus, carbon nanotubes do not improve the stability of unprotonated i-motif due to simple adsorption or just physical interactions. We hypothesize that the stabilizing effect of carbon nanotubes reported in the literature is due to proton transfer from the functional group in the nanotube to cytosines and subsequent formation of C:C+ pairs.


Assuntos
Simulação de Dinâmica Molecular , Nanotubos de Carbono/química , Telômero/química , Adsorção , Humanos , Motivos de Nucleotídeos
14.
Biophys Chem ; 250: 106173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31005696

RESUMO

In this work we studied the unfolding processes of the noncanonical telomeric DNA fragments, i.e. G-quadruplex and i-motif. These transitions were analyzed in details by applying biased molecular dynamics simulations. The bias is imposed on the root of mean square displacement of selected atoms from the reference states which are ideal G-quadruplex and i-motif structures. The unfolding is carried out using the telomeric duplex fragment within which these both noncanonical structures are formed in the same place and exist together. The unfolding of one of the structures is carried out without affecting the second one. In the next stage of the studies the unfolding of the i-motif was also studied starting from the already unfolded G-quadruplex. We found that the work necessary to destroy G-quadruplexes are high at both acidic and neutral pH. The same was observed in the unfolding of i-motif at acidic pH. However, at the neutral pH the obtained work was small though still nonzero. It means that the presence of the complementary guanine rich strand enhances the stability of the i-motif which normally spontaneously unfolds to the hairpin at the neutral pH. Moreover, we found that unfolded G-quadruplex fragment is able to interact with the still existing i-motif and this leads to significant stabilization of the i-motif at the neutral pH. Thus, the presence of the complementary G-quadruplex at the neutral pH stabilizes the i-motif to some extent but even stronger stabilizing effect is observed after unfolding and relaxing the G-quadruplex.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Quadruplex G , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico
15.
J Phys Chem B ; 123(2): 468-479, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30589547

RESUMO

Molecular dynamics simulations were employed to study the properties of G-quadruplex and i-motif secondary DNA structures formed within the canonical telomere fragment of the Watson-Crick duplex. These secondary structures were built symmetrically in the same place of the duplex and were subjected to the analysis in standard unbiased simulations and using metadynamics scheme for the determination of potential of mean force associated with the enforced unfolding of the i-motif parts of the systems. Also, enforced formation of i-motif structures, starting from partially unfolded duplex, were studied in order to find whether formation of i-motif facilitates spontaneous formation of G-quadruplex. We found that i-motif formed from single stranded DNA is unstable at neutral pH and room temperature. On the other hand, the i-motif is strongly stabilized by the presence of complementary G-quadruplex, which should be the most likely configuration when these secondary structures form from double stranded DNA. The stabilization is observed either in neutral or in acidic pH though in the neutral case the i-motif can also reveal considerable stability in the hairpin configuration. We did not observe spontaneous folding of the guanine-rich strand into the G-quadruplex when the cytosine rich strand was dragged to i-motif configuration. This observation suggests that both folding and unfolding transitions are kinetically blocked.


Assuntos
DNA/química , Quadruplex G , Telômero/química , DNA/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Temperatura
16.
Biophys Chem ; 237: 22-30, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29631151

RESUMO

This work deals with a molecular dynamics analysis of the protonated and deprotonated states of the natural sequence d[(CCCTAA)3CCCT] of the telomeric DNA forming the intercalated i-motif or paired with the sequence d[(CCCTAA)3CCCT] and forming the Watson-Crick (WC) duplex. By utilizing the amber force field for nucleic acids we built the i-motif and the WC duplex either with native cytosines or using their protonated forms. We studied, by applying molecular dynamics simulations, the role of hydrogen bonds between cytosines or in cytosine-guanine pairs in the stabilization of both structures in the physiological fluid. We found that hydrogen bonds exist in the case of protonated i-motif and in the standard form of the WC duplex. They, however, vanish in the case of the deprotonated i-motif and protonated form of the WC duplex. By determining potentials of mean force in the enforced unwrapping of these structures we found that the protonated i-motif is thermodynamically the most stable. Its deprotonation leads to spontaneous and observed directly in the unbiased calculations unfolding of the i-motif to the hairpin structure at normal temperature. The WC duplex is stable in its standard form and its slight destabilization is observed at the acidic pH. However, the protonated WC duplex unwraps very slowly at 310 K and its decomposition was not observed in the unbiased calculations. At higher temperatures (ca. 400 K or more) the WC duplex unwraps spontaneously.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Telômero/química , Temperatura , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico
17.
Langmuir ; 34(7): 2543-2550, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29376380

RESUMO

This work deals with an analysis of drugs carriers based on the structure of a carbon nanotube using large-scale atomistic molecular dynamics simulations. The analyzed systems link several functions in a single architecture. They are as follows: (i) the sidewalls and tips of carbon nanotubes are covalently functionalized by polyethylene glycol-folic acid conjugates, and this approach allows for creation of hydrophytic and biocompatible systems; (ii) doxorubicin is kept in the internal space of a carbon nanotube as a mixture with dyes (p-phenylenediamine or neutral red)-it allows for pH-controlled release or alteration of the interaction topology; (iii) the mixture of doxorubicin and dyes in the nanotube interior is additionally sealed by fullerene nanoparticles which act as pistons at acidic pH and loosen the tangle of polyethylene glycol chains at the nanotube tips. This enhances the release of doxorubicin from the nanotube when compared to the analogous system but without the fullerene caps; (iv) another function of the carrier can be activated by filling of the fullerenes by magnetic material-then, the carrier can be visualized by means of magnetic resonance imaging, it can realize magnetic hyperthermia of tumor cells, and intense rotation of the nanoparticles can be induced by the application of an external magnetic field. That rotation enhances the release of doxorubicin from the nanotube and leads to the increase of the rotational temperature. The studies show that the proposed design of the drug-doxorubicin carrier reveals very promising properties. Its fabrication is absolutely feasible, as all individual stages necessary for its construction have been confirmed in the literature.


Assuntos
Simulação por Computador , Doxorrubicina/química , Portadores de Fármacos , Magnetismo , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Nanotubos de Carbono/química
18.
Phys Chem Chem Phys ; 19(13): 9300-9312, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28323298

RESUMO

This work deals with an analysis of the covalent functionalization of a carbon nanotube using polyethylene glycol chains terminated by folic acid fragments. The analysis is focused on theoretical predictions, using molecular dynamics simulations, of the properties of such constructs as pH controlled carriers of the anticancer drug doxorubicin. The analyzed systems are expected to hold the doxorubicin in the inner cavity of the carbon nanotube at neutral pH and unload the drug at slightly acidic pH. This property comes from incorporation into the nanotube of some dye molecules (p-phenylenediamine or neutral red) which undergo protonation at slightly acidic pH. We found that both dyes lead to the formation of a stable, co-absorbed phase of a doxorubicin-dye mixture inside the nanotube at physiological pH. At acidic pH we observed a spontaneous release of dyes from the nanotube, leading finally to the state with only doxorubicin encapsulated in the nanotube interior. Thus, the analyzed constructs can be considered as carriers of doxorubicin that are selective to tumor microenvironments (which exhibit reduced pH due to hypoxia and overexpression of folate receptors). However, we also found that the release of doxorubicin from the nanotube at acidic pH is kinetically blocked, at least in the case of the system sizes studied here. Thus, we also discussed some possible ways of reducing the activation barriers against doxorubicin release at acidic pH.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Nanotubos de Carbono/química , Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos , Ácido Fólico/química , Simulação de Dinâmica Molecular , Polietilenoglicóis/química
19.
Langmuir ; 32(19): 4719-28, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27133585

RESUMO

This work shows results of a theoretical survey, based on molecular dynamics simulation, of potential applicability of doxorubicin coadsorption with various dyes molecules on/in carbon nanotubes as a drug delivery system. The central idea is to take advantage of the dyes charge distribution change upon switching the pH of the environment from neutral (physiological 7.4) to acidic one (∼5.5 which is typical for tumor tissues). This work discusses results obtained for four dye molecules revealing more or less interesting behavior. These were bromothymol blue, methyl red, neutral red, and p-phenylenediamine. All of them reveal pKa in the range 5-7 and thus will undergo protonation in that pH range. We considered coadsorption on external walls of carbon nanotubes and sequential filling of the nanotubes inner hollow space by drug and dyes. The latter approach, with the application of neutral red and p-phenylenediamine as blockers of doxorubicin, led to the most promising results. Closer analysis of these systems allowed us to state that neutral red can be particularly useful as a long-term blocker of doxorubicin encapsulated in the inner cavity of (30,0) carbon nanotube at neutral pH. At acidic pH we observed a spontaneous release of neutral red from the nanotube and unblocking of doxorubicin. We also confirmed, by analysis of free energy profiles, that unblocked doxorubicin can spontaneously leave the nanotube interior at the considered conditions. Thus, that system can realize pH controlled doxorubicin release in acidic environment of tumor tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...