Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 7(1): 16, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665463

RESUMO

Increasing evidence suggests that antibody-drug conjugates (ADCs) can enhance anti-tumor immunity and improve clinical outcome. Here, we elucidate the therapeutic efficacy and immune-mediated mechanisms of a novel HER2-targeting ADC bearing a potent anthracycline derivate as payload (T-PNU) in a human HER2-expressing syngeneic breast cancer model resistant to trastuzumab and ado-trastuzumab emtansine. Mechanistically, the anthracycline component of the novel ADC induced immunogenic cell death leading to exposure and secretion of danger-associated molecular signals. RNA sequencing derived immunogenomic signatures and TCRß clonotype analysis of tumor-infiltrating lymphocytes revealed a prominent role of the adaptive immune system in the regulation of T-PNU mediated anti-cancer activity. Depletion of CD8 T cells severely reduced T-PNU efficacy, thus confirming the role of cytotoxic T cells as drivers of the T-PNU mediated anti-tumor immune response. Furthermore, T-PNU therapy promoted immunological memory formation in tumor-bearing animals protecting those from tumor rechallenge. Finally, the combination of T-PNU and checkpoint inhibition, such as α-PD1, significantly enhanced tumor eradication following the treatment. In summary, a novel PNU-armed, HER2-targeting ADC elicited long-lasting immune protection in a murine orthotopic breast cancer model resistant to other HER2-directed therapies. Our findings delineate the therapeutic potential of this novel ADC payload and support its clinical development for breast cancer patients and potentially other HER2 expressing malignancies.


Assuntos
Antraciclinas/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Memória Imunológica/efeitos dos fármacos , Neoplasias Mamárias Experimentais/imunologia , Camundongos Endogâmicos BALB C , Receptor ErbB-2/genética , Trastuzumab/uso terapêutico
2.
Front Immunol ; 9: 2490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450096

RESUMO

Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including renal cell carcinoma and osteosarcoma, making it an attractive target for targeted cancer therapy. Here, we describe the de novo discovery of fully human ROR2-specific antibodies and potent antibody drug conjugates (ADCs) derived thereof by combining antibody discovery from immune libraries of human immunoglobulin transgenic animals using the Transpo-mAb mammalian cell-based IgG display platform with functional screening for internalizing antibodies using a secondary ADC assay. The discovery strategy entailed immunization of transgenic mice with the cancer antigen ROR2, harboring transgenic IgH and IgL chain gene loci with limited number of fully human V, D, and J gene segments. This was followed by recovering antibody repertoires from the immunized animals, expressing and screening them as full-length human IgG libraries by transposon-mediated display in progenitor B lymphocytes ("Transpo-mAb Display") for ROR2 binding. Individual cellular "Transpo-mAb" clones isolated by single cell sorting and capable of expressing membrane-bound as well as secreted human IgG were directly screened during antibody discovery, not only for high affinity binding to human ROR2, but also functionally as ADCs using a cytotoxicity assay with a secondary anti-human IgG-toxin-conjugate. Using this strategy, we identified and validated 12 fully human, monoclonal anti-human ROR2 antibodies with nanomolar affinities that are highly potent as ADCs and could be promising candidates for the therapy of human cancer. The screening for functional and internalizing antibodies during the early phase of antibody discovery demonstrates the utility of the mammalian cell-based Transpo-mAb Display platform to select for functional binders and as a powerful tool to improve the efficiency for the development of therapeutically relevant ADCs.


Assuntos
Anticorpos Monoclonais Humanizados/isolamento & purificação , Anticorpos Monoclonais/isolamento & purificação , Imunoconjugados/isolamento & purificação , Neoplasias/terapia , Células Precursoras de Linfócitos B/fisiologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunização , Imunoconjugados/farmacologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Imunotoxinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Análise de Célula Única , Éxons VDJ/genética
3.
Mol Cancer Ther ; 16(5): 879-892, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258164

RESUMO

Antibody-drug conjugates (ADC) are highly potent and specific antitumor drugs, combining the specific targeting of mAbs with the potency of small-molecule toxic payloads. ADCs generated by conventional chemical conjugation yield heterogeneous mixtures with variable pharmacokinetics, stability, safety, and efficacy profiles. To address these issues, numerous site-specific conjugation technologies are currently being developed allowing the manufacturing of homogeneous ADCs with predetermined drug-to-antibody ratios. Here, we used sortase-mediated antibody conjugation (SMAC) technology to generate homogeneous ADCs based on a derivative of the highly potent anthracycline toxin PNU-159682 and a noncleavable peptide linker, using the anti-HER2 antibody trastuzumab (part of Kadcyla) and the anti-CD30 antibody cAC10 (part of Adcetris). Characterization of the resulting ADCs in vitro and in vivo showed that they were highly stable and exhibited potencies exceeding those of ADCs based on conventional tubulin-targeting payloads, such as Kadcyla and Adcetris. The data presented here suggest that such novel and highly potent ADC formats may help to increase the number of targets available to ADC approaches, by reducing the threshold levels of target expression required. Mol Cancer Ther; 16(5); 879-92. ©2017 AACR.


Assuntos
Antraciclinas/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina , Aminoaciltransferases/química , Animais , Antraciclinas/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/química , Brentuximab Vedotin , Linhagem Celular Tumoral , Cisteína Endopeptidases/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Antígeno Ki-1/química , Antígeno Ki-1/imunologia , Maitansina/análogos & derivados , Maitansina/química , Maitansina/imunologia , Camundongos , Neoplasias/imunologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Trastuzumab/administração & dosagem , Trastuzumab/química , Trastuzumab/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
MAbs ; 8(4): 726-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986818

RESUMO

In vitro antibody display and screening technologies geared toward the discovery and engineering of clinically applicable antibodies have evolved from screening artificial antibody formats, powered by microbial display technologies, to screening of natural, full-IgG molecules expressed in mammalian cells to readily yield lead antibodies with favorable properties in production and clinical applications. Here, we report the development and characterization of a novel, next-generation mammalian cell-based antibody display and screening platform called Transpo-mAb Display, offering straightforward and efficient generation of cellular libraries by using non-viral transposition technology to obtain stable antibody expression. Because Transpo-mAb Display uses DNA-transposable vectors with substantial cargo capacity, genomic antibody heavy chain expression constructs can be utilized that undergo the natural switch from membrane bound to secreted antibody expression in B cells by way of alternative splicing of Ig-heavy chain transcripts from the same genomic expression cassette. We demonstrate that stably transposed cells co-express transmembrane and secreted antibodies at levels comparable to those provided by dedicated constructs for secreted and membrane-associated IgGs. This unique feature expedites the screening and antibody characterization process by obviating the need for intermediate sequencing and re-cloning of individual antibody clones into separate expression vectors for functional screening purposes. In a series of proof-of-concept experiments, we demonstrate the seamless integration of antibody discovery with functional screening for various antibody properties, including binding affinity and suitability for preparation of antibody-drug conjugates.


Assuntos
Anticorpos Monoclonais/análise , Técnicas de Visualização da Superfície Celular/métodos , Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina G/análise , Animais , Elementos de DNA Transponíveis , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...