Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(3): 1182-1197, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721267

RESUMO

Southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus, qSLB3.04 , conferring recessive resistance to SLB was previously mapped on maize chromosome 3. Using a combination of map-based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR-Cas9 editing, we demonstrate that a leucine-rich repeat receptor-like kinase gene which we have called ChSK1 (Cochliobolus heterostrophus Susceptibility Kinase 1) at qSLB3.04 causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response. We present evidence that ChSK1 may be associated with suppression of the basal immune response. These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.


Assuntos
Ascomicetos , Zea mays , Zea mays/genética , Zea mays/microbiologia , Leucina , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia
2.
Plant J ; 99(4): 673-685, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009129

RESUMO

Nuclear male-sterile mutants with non-conditional, recessive and strictly monogenic inheritance are useful for both hybrid and conventional breeding systems, and have long been a research focus for many crops. In allohexaploid wheat, however, genic redundancy results in rarity of such mutants, with the ethyl methanesulfonate-induced mutant ms5 among the few reported to date. Here, we identify TaMs5 as a glycosylphosphatidylinositol-anchored lipid transfer protein required for normal pollen exine development, and by transgenic complementation demonstrate that TaMs5-A restores fertility to ms5. We show ms5 locates to a centromere-proximal interval and has a sterility inheritance pattern modulated by TaMs5-D but not TaMs5-B. We describe two allelic forms of TaMs5-D, one of which is non-functional and confers mono-factorial inheritance of sterility. The second form is functional but shows incomplete dominance. Consistent with reduced functionality, transcript abundance in developing anthers was found to be lower for TaMs5-D than TaMs5-A. At the 3B homoeolocus, we found only non-functional alleles among 178 diverse hexaploid and tetraploid wheats that include landraces and Triticum dicoccoides. Apparent ubiquity of non-functional TaMs5-B alleles suggests loss-of-function arose early in wheat evolution and, therefore, at most knockout of two homoeoloci is required for sterility. This work provides genetic information, resources and tools required for successful implementation of ms5 sterility in breeding systems for bread and durum wheats.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/genética , Pólen/metabolismo , Pólen/fisiologia , Triticum/genética , Triticum/fisiologia
3.
Theor Appl Genet ; 132(7): 1965-1979, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30899967

RESUMO

KEY MESSAGE: Elite wheat pollinators are critical for successful hybrid breeding. We identified Rht-B1 and Ppd-D1 loci affecting multiple pollinator traits and therefore represent major targets for improving hybrid seed production. Hybrid breeding has a great potential to significantly boost wheat yields. Ideal male pollinators would be taller in stature, contain many spikelets well-spaced along the spike and exhibit high extrusion of large anthers. Most importantly, flowering time would match with that of the female parent. Available genetic resources for developing an elite wheat pollinator are limited, and the genetic basis for many of these traits is largely unknown. Here, we report on the genetic analysis of pollinator traits using biparental mapping populations. We identified two anther extrusion QTLs of medium effect, one on chromosome 1BL and the other on 4BS coinciding with the semi-dwarfing Rht-B1 locus. The effect of Rht-B1 alleles on anther extrusion is genotype dependent, while tall plant Rht-B1a allele is consistently associated with large anthers. Multiple QTLs were identified at the Ppd-D1 locus for anther length, spikelet number and spike length, with the photoperiod-sensitive Ppd-D1b allele associated with favourable pollinator traits in the populations studied. We also demonstrated that homeoloci, Rht-D1 and Ppd-B1, influence anther length among other traits. These results suggest that combinations of Rht-B1 and Ppd-D1 alleles control multiple pollinator traits and should be major targets of hybrid wheat breeding programs.


Assuntos
Flores/genética , Polinização/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Fenótipo , Fotoperíodo
4.
PLoS One ; 14(2): e0211730, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716107

RESUMO

Wheat landraces, wild relatives and other 'exotic' accessions are important sources of new favorable alleles. The use of those exotic alleles is facilitated by having access to information on the association of specific genomic regions with desirable traits. Here, we conducted a genome-wide association study (GWAS) using a wheat panel that includes landraces, synthetic hexaploids and other exotic wheat accessions to identify loci that contribute to increases in grain yield in southern Australia. The 568 accessions were grown in the field during the 2014 and 2015 seasons and measured for plant height, maturity, spike length, spike number, grain yield, plant biomass, HI and TGW. We used the 90K SNP array and two GWAS approaches (GAPIT and QTCAT) to identify loci associated with the different traits. We identified 17 loci with GAPIT and 25 with QTCAT. Ten of these loci were associated with known genes that are routinely employed in marker assisted selection such as Ppd-D1 for maturity and Rht-D1 for plant height and seven of those were detected with both methods. We identified one locus for yield per se in 2014 on chromosome 6B with QTCAT and three in 2015, on chromosomes 4B and 5A with GAPIT and 6B with QTCAT. The 6B loci corresponded to the same region in both years. The favorable haplotypes for yield at the 5A and 6B loci are widespread in Australian accessions with 112 out of 153 carrying the favorable haplotype at the 5A locus and 136 out of 146 carrying the favorable haplotype at the 6A locus, while the favorable haplotype at 4B is only present in 65 out of 149 Australian accessions. The low number of yield QTL in our study corroborate with other GWAS for yield in wheat, where most of the identified loci have very small effects.


Assuntos
Grão Comestível/genética , Triticum/genética , Alelos , Austrália , Mapeamento Cromossômico , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Estações do Ano , Sementes/genética , Austrália do Sul
5.
G3 (Bethesda) ; 9(1): 189-201, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30459178

RESUMO

Southern Leaf Blight (SLB), Northern Leaf Blight (NLB), and Gray Leaf Spot (GLS) caused by Cochliobolus heterostrophus, Setosphaeria turcica, and Cercospora zeae-maydis respectively, are among the most important diseases of corn worldwide. Previously, moderately high and significantly positive genetic correlations between resistance levels to each of these diseases were identified in a panel of 253 diverse maize inbred lines. The goal of this study was to identify loci underlying disease resistance in some of the most multiple disease resistant (MDR) lines by the creation of chromosome segment substitution line (CSSL) populations in multiple disease susceptible (MDS) backgrounds. Four MDR lines (NC304, NC344, Ki3, NC262) were used as donor parents and two MDS lines (Oh7B, H100) were used as recurrent parents to produce eight BC3F4:5 CSSL populations comprising 1,611 lines in total. Each population was genotyped and assessed for each disease in replicated trials in two environments. Moderate to high heritabilities on an entry mean basis were observed (0.32 to 0.83). Several lines in each population were significantly more resistant than the MDS parental lines for each disease. Multiple quantitative trait loci (QTL) for disease resistance were detected for each disease in most of the populations. Seventeen QTL were associated with variation in resistance to more than one disease (SLB/NLB: 2; SLB/GLS: 7; NLB/GLS: 2 and 6 to all three diseases). For most populations and most disease combinations, significant correlations were observed between disease scores and also between marker effects for each disease. The number of lines that were resistant to more than one disease was significantly higher than would be expected by chance. Using the results from individual QTL analyses, a composite statistic based on Mahalanobis distance (Md) was used to identify joint marker associations with multiple diseases. Across all populations and diseases, 246 markers had significant Md values. However further analysis revealed that most of these associations were due to strong QTL effects on a single disease. Together, these findings reinforce our previous conclusions that loci associated with resistance to different diseases are clustered in the genome more often than would be expected by chance. Nevertheless true MDR loci which have significant effects on more than one disease are still much rarer than loci with single disease effects.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genética Populacional , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Zea mays/crescimento & desenvolvimento
6.
Nat Commun ; 8(1): 869, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021581

RESUMO

The current rate of yield gain in crops is insufficient to meet the predicted demands. Capturing the yield boost from heterosis is one of the few technologies that offers rapid gain. Hybrids are widely used for cereals, maize and rice, but it has been a challenge to develop a viable hybrid system for bread wheat due to the wheat genome complexity, which is both large and hexaploid. Wheat is our most widely grown crop providing 20% of the calories for humans. Here, we describe the identification of Ms1, a gene proposed for use in large-scale, low-cost production of male-sterile (ms) female lines necessary for hybrid wheat seed production. We show that Ms1 completely restores fertility to ms1d, and encodes a glycosylphosphatidylinositol-anchored lipid transfer protein, necessary for pollen exine development. This represents a key step towards developing a robust hybridization platform in wheat.Heterosis can rapidly boost yield in crop species but development of hybrid-breeding systems for bread wheat remains a challenge. Here, Tucker et al. describe the molecular identification of the wheat Ms1 gene and discuss its potential for large-scale hybrid seed production in wheat.


Assuntos
Proteínas de Transporte/genética , Triticum/genética , Fertilidade/genética , Genes de Plantas , Teste de Complementação Genética , Hibridização Genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento
7.
Funct Integr Genomics ; 7(1): 37-52, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16534632

RESUMO

A multigene family expressed during early floral development was identified on the short arm of wheat chromosome 3D in the region of the Ph2 locus, a locus controlling homoeologous chromosome pairing in allohexaploid wheat. Physical, genetic and molecular characterisation of the Wheat Meiosis 1 (WM1) gene family identified seven members that localised within a region of 173-kb. WM1 gene family members were sequenced and they encode mainly type Ia plasma membrane-anchored leucine rich repeat-like receptor proteins. In situ expression profiling suggests the gene family is predominantly expressed in floral tissue. In addition to the WM1 gene family, a number of other genes, gene fragments and pseudogenes were identified. It has been predicted that there is approximately one gene every 19-kb and that this region of the wheat genome contains 23 repetitive elements including BARE-1 and Wis2-1 like sequences. Nearly 50% of the repetitive elements identified were similar to known transposons from the CACTA superfamily. Ty1-copia, Ty3-gypsy and Athila LTR retroelements were also prevalent within the region. The WM1 gene cluster is present on 3DS and on barley 3HS but missing from the A and B genomes of hexaploid wheat. This suggests either recent generation of the cluster or specific deletion of the cluster during wheat polyploidisation. The evolutionary significance of the cluster, its possible roles in disease response or floral and early meiotic development and its location at or near the Ph2 locus are discussed.


Assuntos
Elementos de DNA Transponíveis/genética , Flores/metabolismo , Família Multigênica/genética , Poaceae/genética , Poliploidia , Retroelementos/genética , Família Multigênica/fisiologia , Poaceae/metabolismo , Triticum/genética
8.
Plant J ; 44(2): 208-22, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16212601

RESUMO

The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.


Assuntos
Genes de Plantas/genética , Phytophthora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/microbiologia , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Clonagem Molecular , Teste de Complementação Genética , Ligação Genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Solanum/metabolismo
9.
Genetics ; 167(2): 941-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15238542

RESUMO

Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.


Assuntos
Diploide , Genoma de Planta , Reação em Cadeia da Polimerase , Poliploidia , Triticum/genética , Sequência de Bases , Primers do DNA , Variação Genética , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência , Triticum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...