Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Gastroenterol Nutr ; 71(4): 501-507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32639455

RESUMO

OBJECTIVES: Inflammatory bowel disease (IBD) can be successfully treated with vedolizumab. Studies in adult IBD patients have shown that differences in response to vedolizumab may be related to variability in vedolizumab trough levels, but in children with pediatric-onset IBD data regarding vedolizumab trough levels are not available. Thus far, the role of trough levels in pediatric-onset IBD treatment remains unclear. We aimed to investigate predictors of vedolizumab trough levels in pediatric-onset IBD patients. METHODS: Data from anti-tumor necrosis factor refractory pediatric-onset IBD patients who received vedolizumab were collected retrospectively. Vedolizumab trough levels were measured in serum samples collected before each infusion. A linear mixed model was conducted to analyze factors that influence trough levels. RESULTS: Twenty-six pediatric-onset IBD patients (14 ulcerative colitis [UC]), 9 Crohn Disease [CD], 3 IBD-unclassified [IBD-U]) received 258 vedolizumab infusions. Mean vedolizumab trough level at week 6 was 29.9 µg/mL (SD 17.8), and 11.5 µg/mL (SD 4.9) during maintenance therapy. CD patients had significantly lower trough levels than IBD-U patients (ß 15.2; 95% confidence interval [CI] -1.1 to 29.2; P = 0.036). Higher fecal calprotectin (ß -0.009; 95% CI -0.02 to -0.003; P = 0.007) and C-reactive protein levels (ß -0.4; 95% CI -0.72 to -0.04; P = 0.027) were associated with lower trough levels, whereas shortening of time between infusions led to higher trough levels (ß -0.77; 95% CI -0.9 to 0.64; P < 0.001). CONCLUSIONS: In this group of pediatric-onset IBD patients, trough levels were significantly lower in CD patients compared with UC/IBD-U patients. Higher levels of inflammatory markers were associated with lower vedolizumab trough levels.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Adulto , Anticorpos Monoclonais Humanizados , Criança , Colite Ulcerativa/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Estudos Retrospectivos , Resultado do Tratamento
2.
J Immunotoxicol ; 10(1): 96-105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23134195

RESUMO

The use of recombinant human proteins for the treatment of several diseases has increased considerably during the last decades. A major safety and efficacy issue of biopharmaceuticals is their potential immunogenicity. To prevent immunogenicity, biotechnology-derived proteins are engineered to be as human-like as possible. Immunogenicity is mainly determined in non-human primates (NHP), as they are considered to be the best predictive animal species for human safety, based on their close relatedness to man. As minipigs are increasingly used in the safety evaluation of (bio)pharmaceuticals, the predictive value of the minipig in immunogenicity testing was evaluated in this study, using anakinra as a model compound. Animals were treated subcutaneously with either placebo, low- (0.5 mg/kg), or high-dose (5 mg/kg) anakinra daily on 29 consecutive days. After the first and last dose, the pharmacokinetic (PK) profile of anakinra was evaluated. Antibodies directed to anakinra were measured on several time points during the treatment period. Furthermore, hematology, clinical chemistry, body weight, clinical signs, and histopathology of several organs were evaluated. No signs of toxicity were observed upon treatment with anakinra. PK parameters were comparable with those found in human and NHP studies performed with anakinra. All animals developed anti-anakinra antibodies. The results obtained in minipigs were comparable to those observed in monkeys. For anakinra, the predictive value of the minipig for immunogenicity testing was found to be comparable to that seen in NHP. However, more studies evaluating additional biopharmaceutical products are needed to support the use of the minipig as an alternative model for (immuno)toxicity testing, including immunogenicity.


Assuntos
Testes Imunológicos , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/imunologia , Porco Miniatura/imunologia , Animais , Anticorpos/sangue , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Injeções Subcutâneas , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Masculino , Valor Preditivo dos Testes , Receptores de Interleucina-1/antagonistas & inibidores , Proteínas Recombinantes/administração & dosagem , Suínos
3.
Traffic ; 12(11): 1634-47, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810155

RESUMO

Sphingolipids are considered to play a key role in protein sorting and membrane trafficking. In melanocytic cells, sorting of lysosomal and melanosomal proteins requires the sphingolipid glucosylceramide (GlcCer). This sorting information is located in the lumenal domain of melanosomal proteins. We found that two processes dependent on lumenal pH, protein sialylation and lysosomal acid lipase (LAL) activity were aberrant in GM95 melanocyte cells, which do not produce glycosphingolipids. Using fluorescence lifetime imaging microscopy (FLIM), we found that the lumenal pH in the trans-Golgi network and lysosomes of wild-type melanocyte MEB4 cells are >1 pH unit lower than GM95 cells and fibroblasts. In addition to the lower pH found in vivo, the in vitro activity of the proton pump, the vacuolar-type H(+) -translocating ATPase (V-ATPase), was twofold higher in MEB4 compared to GM95 cells. The apparent K(i) for inhibition of the V-ATPase by concanamycin A and archazolid A, which share a common binding site on the c-ring, was lower in glycosphingolipid-deficient GM95 cells. No difference between the MEB4 and GM95 cells was found for the V-ATPase inhibitors apicularen A and salicylihalimide. We conclude that hyperacidification in MEB4 cells requires glycosphingolipids and propose that low pH is necessary for protein sorting and melanosome biogenesis. Furthermore, we suggest that glycosphingolipids are indirectly involved in protein sorting and melanosome biogenesis by stimulating the proton pump, possibly through binding of GlcCer. These experiments establish, for the first time, a link between pH, glycosphingolipids and melanosome biogenesis in melanocytic MEB4 cells, to suggest a role for glycosphingolipids in hyperacidification in melanocytes.


Assuntos
Endossomos/metabolismo , Glucosilceramidas/metabolismo , Lisossomos/metabolismo , Melanócitos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/metabolismo , Sítios de Ligação/fisiologia , Fibroblastos/metabolismo , Glucosilceramidas/biossíntese , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lipase/metabolismo , Macrolídeos/farmacologia , Melanossomas/metabolismo , Mutação , Transporte Proteico , Bombas de Próton/metabolismo , Tiazóis/farmacologia , Células Tumorais Cultivadas
4.
Traffic ; 9(6): 951-63, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18373728

RESUMO

Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase-related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome-associated membrane protein 1 (LAMP-1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP-1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.


Assuntos
Proteínas de Membrana Lisossomal/fisiologia , Melanossomas/fisiologia , Animais , Linhagem Celular Tumoral , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/ultraestrutura , Melanócitos/enzimologia , Melanoma/ultraestrutura , Melanossomas/metabolismo , Melanossomas/ultraestrutura , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Transfecção
5.
J Cell Biol ; 179(1): 101-15, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17923531

RESUMO

Glycosphingolipids are controlled by the spatial organization of their metabolism and by transport specificity. Using immunoelectron microscopy, we localize to the Golgi stack the glycosyltransferases that produce glucosylceramide (GlcCer), lactosylceramide (LacCer), and GM3. GlcCer is synthesized on the cytosolic side and must translocate across to the Golgi lumen for LacCer synthesis. However, only very little natural GlcCer translocates across the Golgi in vitro. As GlcCer reaches the cell surface when Golgi vesicular trafficking is inhibited, it must translocate across a post-Golgi membrane. Concanamycin, a vacuolar proton pump inhibitor, blocks translocation independently of multidrug transporters that are known to translocate short-chain GlcCer. Concanamycin did not reduce LacCer and GM3 synthesis. Thus, GlcCer destined for glycolipid synthesis follows a different pathway and transports back into the endoplasmic reticulum (ER) via the late Golgi protein FAPP2. FAPP2 knockdown strongly reduces GM3 synthesis. Overall, we show that newly synthesized GlcCer enters two pathways: one toward the noncytosolic surface of a post-Golgi membrane and one via the ER toward the Golgi lumen LacCer synthase.


Assuntos
Glucosilceramidas/metabolismo , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Animais , Antígenos CD/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Brefeldina A/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Bovinos , Linhagem Celular , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Glicosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Humanos , Membranas Intracelulares/metabolismo , Lactosilceramidas/metabolismo , Macrolídeos/farmacologia , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Inibidores da Bomba de Prótons/farmacologia , Ratos
6.
Semin Cell Dev Biol ; 15(4): 375-87, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15207828

RESUMO

Glycosphingolipids, a family of heterogeneous lipids with biophysical properties conserved from fungi to mammals, are key components of cellular membranes. Because of their tightly packed backbone, they have the ability to associate with other sphingolipids and cholesterol to form microdomains called lipid rafts, with which a variety of proteins associate. These microdomains are thought to originate in the Golgi apparatus, where most sphingolipids are synthesized, and are enriched at the plasma membrane. They are involved in an increasing number of processes, including sorting of proteins by allowing selectivity in intracellular membrane transport. Apart from being involved in recognition and signaling on the cell surface, glycosphingolipids may fulfill unexpected roles on the cytosolic surface of cellular membranes.


Assuntos
Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/fisiologia , Animais , Transporte Biológico , Glicoesfingolipídeos/química , Humanos , Microdomínios da Membrana , Transdução de Sinais
7.
Philos Trans R Soc Lond B Biol Sci ; 358(1433): 869-73, 2003 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-12803919

RESUMO

In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.


Assuntos
Glucosilceramidas/fisiologia , Glicoesfingolipídeos/fisiologia , Microdomínios da Membrana/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...