Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 25(1): 1-11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31920047

RESUMO

To detect small-scale changes in tissue with optical techniques, small sampling volumes are required. Single fiber reflectance (SFR) spectroscopy has a sampling depth of a few hundred micrometers. SFR spectroscopy uses a single fiber to emit and collect light. The only available model to determine optical properties with SFR spectroscopy was derived for tissues with modified Henyey-Greenstein phase functions. Previously, we demonstrated that this model is inadequate for other tissue phase functions. We develop a model to relate SFR measurements to scattering properties for a range of phase functions, in the absence of absorption. Since the source and detector overlap, the reflectance cannot be accurately described by diffusion theory alone: SFR measurements are subdiffuse. Therefore, we describe the reflectance as a combination of a diffuse and a semiballistic component. We use the model of Farrell et al. for the diffuse component, solved for an overlapping source and detector fiber. For the semiballistic component, we derive a new parameter, psb, which incorporates the integrals of the phase function over 1 deg in the backward direction and 23 deg in the forward direction. Our model predicts the reflectance with a median error of 2.1%, compared to 9.0% for the currently available model.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Espalhamento de Radiação , Análise Espectral/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Luz , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...