Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(22): 224106, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911310

RESUMO

We extend our linear-scaling approach for the calculation of Hartree-Fock exchange energy using localized in situ optimized orbitals [Dziedzic et al., J. Chem. Phys. 139, 214103 (2013)] to leverage massive parallelism. Our approach has been implemented in the onetep (Order-N Electronic Total Energy Package) density functional theory framework, which employs a basis of non-orthogonal generalized Wannier functions (NGWFs) to achieve linear scaling with system size while retaining controllable near-complete-basis-set accuracy. For the calculation of Hartree-Fock exchange, we use a resolution-of-identity approach, where an auxiliary basis set of truncated spherical waves is used to fit products of NGWFs. The fact that the electrostatic potential of spherical waves (SWs) is known analytically, combined with the use of a distance-based cutoff for exchange interactions, leads to a calculation cost that scales linearly with the system size. Our new implementation, which we describe in detail, combines distributed memory parallelism (using the message passing interface) with shared memory parallelism (OpenMP threads) to efficiently utilize numbers of central processing unit cores comparable to, or exceeding, the number of atoms in the system. We show how the use of multiple time-memory trade-offs substantially increases performance, enabling our approach to achieve superlinear strong parallel scaling in many cases and excellent, although sublinear, parallel scaling otherwise. We demonstrate that in scenarios with low available memory, which preclude or limit the use of time-memory trade-offs, the performance degradation of our algorithm is graceful. We show that, crucially, linear scaling with system size is maintained in all cases. We demonstrate the practicability of our approach by performing a set of fully converged production calculations with a hybrid functional on large imogolite nanotubes up to over 1400 atoms. We finish with a brief study of how the employed approximations (exchange cutoff and the quality of the SW basis) affect the calculation walltime and the accuracy of the obtained results.

2.
Genome Res ; 30(12): 1716-1726, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208454

RESUMO

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Assuntos
Análise de Sequência de DNA/veterinária , Cromossomo X/genética , Cromossomo Y/genética , Animais , Bovinos , Linhagem da Célula , Troca Genética , Evolução Molecular , Feminino , Amplificação de Genes , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Testículo/química
3.
J Chem Phys ; 152(17): 174111, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384832

RESUMO

We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, onetep is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange-correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with onetep provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. onetep has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.

4.
Annu Rev Anim Biosci ; 7: 1-16, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30296836

RESUMO

I abandoned my original career choice of high school teaching to pursue dentistry and soon abandoned that path for genetics. The latter decision was due to a challenge by a professor that led to me reading Nobel speeches by pioneer geneticists before I had formal exposure to the subject. Even then, I was 15 years into my career before my interest in rodent genomes gave way to mapping cattle genes. Events behind these twists and turns in my career path comprise the first part of this review. The remainder is a review of the development of the field of bovine genomics from my personal perspective. I have had the pleasure of working with outstanding graduate students, postdocs, and colleagues to contribute my small part to a discipline that has evolved from a few individuals mapping an orphan genome to a discipline underlying a revolution in animal breeding.


Assuntos
Bovinos/genética , Mapeamento Cromossômico/veterinária , Genoma/genética , Genômica/história , Animais , Cruzamento/história , Mapeamento Cromossômico/história , História do Século XX , História do Século XXI , Humanos
5.
J Hered ; 109(5): 598-603, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29718298

RESUMO

Antimicrobial peptides (AMPs) are a class of natural peptides with varying numbers of amino acids. They are principal components of innate immunity in vertebrates, encoding natural antibiotics and providing a protective response against a broad range of microbes including those responsible for tuberculosis, an important disease in bison. NK-lysins are AMPs that have been described in various organisms and are coded by a single gene in several mammalian species, including human. Recently, we described a family of 4 NK-lysin genes in cattle. Here, we examined NK-lysin genes in bison and identified 4 bison paralogs (NK1, NK2A, NK2B, and NK2C), although the current bison genome assembly annotates only 2 (NK1 and NK2). Sequence and phylogenetic analysis support the triplication of NK2 prior to the most recent common ancestor of bison and cattle. Comparative mapping of bison and cattle paralogs indicates that the NK-lysin family is located on bison chromosome 11 with well-conserved synteny of flanking genes relative to cattle. The 3 bison NK-lysin2 genes share high sequence similarity with each other. RNA-seq analysis demonstrates that NK2A, NK2B, and NK2C are expressed primarily in the lung, whereas NK1 is expressed at low levels in all tissues studied. This tissue expression pattern differs from that previously reported for cattle, suggesting some divergence in function since the evolutionary separation of the 2 species.


Assuntos
Bison/genética , Expressão Gênica , Genoma , Proteolipídeos/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Proteolipídeos/química , Homologia de Sequência de Aminoácidos
6.
J Chem Theory Comput ; 14(3): 1412-1432, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29447447

RESUMO

The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼109 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

7.
J Chem Theory Comput ; 13(11): 5572-5581, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28968495

RESUMO

We present a method for computing excitation energies for molecules in solvent, based on the combination of a minimal parameter implicit solvent model and the equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this method, the solvent medium is represented by a smoothly varying dielectric function, constructed directly from the quantum mechanical electronic density using only two tunable parameters. The solvent-solute electrostatic interactions are computed by numerical solution of the nonhomogeneous Poisson equation and incorporated at the Hartree-Fock stage of the EOM-CCSD calculation by modification of the electrostatic potential. We demonstrate the method by computing excited state transition energies and solvent shifts for several small molecules in water. Results are presented for solvated H2O, formaldehyde, acetone, and trans-acrolein, which have low-lying n → π* transitions and associated blue shifts in aqueous solution. Comparisons are made with experimental data and other theoretical approaches, including popular implicit solvation models and QM/MM methods. We find that our approach provides surprisingly good agreement with both experiment and the other models, despite its comparative simplicity. This approach only requires modification of the Fock operator and total energy expressions at the Hartree-Fock level-solvation effects enter into the EOM-CCSD calculation only through the Hartree-Fock orbitals. Our model provides a theoretically and computationally simple route for accurate simulations of excited state spectra of molecules in solution, paving the way for studies of larger and more complex molecules.

8.
J Phys Chem Lett ; 8(1): 35-40, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27936759

RESUMO

The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicate that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.

9.
J Chem Phys ; 145(20): 204114, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908114

RESUMO

Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

10.
Proc Natl Acad Sci U S A ; 113(48): 13815-13820, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849592

RESUMO

Defensins constitute an evolutionary conserved family of cationic antimicrobial peptides that play a key role in host innate immune responses to infection. Defensin genes generally reside in complex genomic regions that are prone to structural variation, and defensin genes exhibit extensive copy number variation in humans and in other species. Copy number variation of defensin genes was examined in inbred lines of Leghorn and Fayoumi chickens, and a duplication of defensin7 was discovered in the Fayoumi breed. Analysis of junction sequences confirmed the occurrence of a simple tandem duplication of defensin7 with sequence identity at the junction, suggesting nonallelic homologous recombination between defensin7 and defensin6 The duplication event generated two chimeric promoters that are best explained by gene conversion followed by homologous recombination. Expression of defensin7 was not elevated in animals with two genes despite both genes being transcribed in the tissues examined. Computational prediction of promoter regions revealed the presence of several putative transcription factor binding sites generated by the duplication event. These data provide insight into the evolution and possible function of large gene families and specifically, the defensins.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA/genética , Defensinas/genética , Evolução Molecular , Sequência de Aminoácidos/genética , Animais , Biologia Computacional , Conversão Gênica/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica , Genômica , Recombinação Homóloga/genética , Homologia de Sequência de Aminoácidos
11.
BMC Vet Res ; 12(1): 231, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737668

RESUMO

BACKGROUND: Host defence peptides are a diverse group of small, cationic peptides and are important elements of the first line of defense against pathogens in animals. Expression and functional analysis of host defense peptides has been evaluated in chicken but there are no direct, comprehensive comparisons with all gene family and individual genes. RESULTS: We examined the expression patterns of all known cathelicidins, ß-defensins and NK-lysin in multiple selected tissues from chickens. CATH1 through 3 were predominantly expressed in the bone marrow, whereas CATHB1 was predominant in bursa of Fabricius. The tissue specific pattern of ß-defensins generally fell into two groups. ß-defensin1-7 expression was predominantly in bone marrow, whereas ß-defensin8-10 and ß-defensin13 were highly expressed in liver. NK-lysin expression was highest in spleen. We synthesized peptide products of these gene families and analysed their antibacterial efficacy. Most of the host defense peptides showed antibacterial activity against E.coli with dose-dependent efficacy. ß-defensin4 and CATH3 displayed the strongest antibacterial activity among all tested chicken HDPs. Microscopic analyses revealed the killing of bacterium by disrupting membranes with peptide treatment. CONCLUSIONS: These results demonstrate dose-dependent antimicrobial effects of chicken HDPs mediated by membrane damage and demonstrate the differential tissue expression pattern of bioactive HDPs in chicken and the relative antimicrobial potency of the peptides they encode.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Regulação da Expressão Gênica , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas/genética , Catelicidinas/metabolismo , Membrana Celular/efeitos dos fármacos , Galinhas , Perfilação da Expressão Gênica , Proteolipídeos/genética , Proteolipídeos/metabolismo , Distribuição Tecidual , beta-Defensinas/genética , beta-Defensinas/metabolismo
12.
PLoS One ; 11(7): e0158882, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27409794

RESUMO

Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Complexo Respiratório Bovino/prevenção & controle , Doenças dos Bovinos/microbiologia , Membrana Celular/metabolismo , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Proteolipídeos/metabolismo , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/microbiologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Dicroísmo Circular , Pulmão/enzimologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Proteolipídeos/genética
13.
Proc Natl Acad Sci U S A ; 112(52): E7223-9, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668394

RESUMO

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.


Assuntos
Bovinos/genética , Dosagem de Genes , Família Multigênica , Proteolipídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Perfilação da Expressão Gênica , Ordem dos Genes , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Peptídeos/farmacologia , Filogenia , Proteolipídeos/classificação , Proteolipídeos/farmacologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
14.
PLoS One ; 10(11): e0142479, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571015

RESUMO

Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.


Assuntos
Complexo Respiratório Bovino/microbiologia , Complexo Respiratório Bovino/virologia , Resistência à Doença , Animais , Complexo Respiratório Bovino/imunologia , Bovinos , Herpesvirus Bovino 1 , Íleo/microbiologia , Íleo/virologia , Sistema Imunitário , Imunidade Humoral , Imuno-Histoquímica , Pulmão/microbiologia , Pulmão/virologia , Masculino , Mannheimia haemolytica , Mycoplasma bovis , Pasteurella multocida , Faringe/microbiologia , Faringe/virologia , Vírus Sincicial Respiratório Bovino , Análise de Sequência de RNA
15.
J Hered ; 106(6): 728-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26546799

RESUMO

The Rift Valley Fever virus (RVFV) presents an epidemic and epizootic threat in sub-Saharan Africa, Egypt, and the Arabian Peninsula, and has furthermore recently gained attention as a potential weapon of bioterrorism due to its ability to infect both livestock and humans. Inbred rat strains show similar characteristic responses to the disease as humans and livestock, making them a suitable model species. Previous studies had indicated differences in susceptibility to RVFV hepatic disease among various rat strains, including a higher susceptibility of Wistar-Furth (WF) compared to a more resistant Lewis (LEW) strain. Further study revealed that this resistance trait exhibits the pattern of a major dominant gene inherited in Mendelian fashion. A genome scan of a congenic WF.LEW strain, created from the susceptible WF and resistant LEW strains and itself resistant to infection with RVFV, revealed 2 potential regions for the location of the gene, 1 on chromosome 3 and the other on chromosome 9. Through backcrossing of WF.LEW rats to WF rats, genotyping offspring using SNPs and microsatellites, and viral challenges of 3 N1 litters, we have mapped the gene to the distal end of chromosome 3.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Febre do Vale de Rift/genética , Animais , Animais Congênicos , Cruzamentos Genéticos , Feminino , Genes Dominantes , Marcadores Genéticos , Genótipo , Haplótipos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WF , Vírus da Febre do Vale do Rift , Análise de Sequência de DNA
16.
BMC Genomics ; 15: 1164, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25534905

RESUMO

BACKGROUND: Bovine respiratory disease complex (BRDC) is an infectious disease of cattle that is caused by a combination of viral and/or bacterial pathogens. Selection for cattle with reduced susceptibility to respiratory disease would provide a permanent tool for reducing the prevalence of BRDC. The objective of this study was to identify BRDC susceptibility loci in pre-weaned Holstein calves as a prerequisite to using genetic improvement as a tool for decreasing the prevalence of BRDC. High density SNP genotyping with the Illumina BovineHD BeadChip was conducted on 1257 male and 757 female Holstein calves from California (CA), and 767 calves identified as female from New Mexico (NM). Of these, 1382 were classified as BRDC cases, and 1396 were classified as controls, with all phenotypes assigned using the McGuirk health scoring system. During the acquisition of blood for DNA isolation, two deep pharyngeal and one mid-nasal diagnostic swab were obtained from each calf for the identification of bacterial and viral pathogens. Genome-wide association analyses were conducted using four analytical approaches (EIGENSTRAT, EMMAX-GRM, GBLUP and FvR). The most strongly associated SNPs from each individual analysis were ranked and evaluated for concordance. The heritability of susceptibility to BRDC in pre-weaned Holstein calves was estimated. RESULTS: The four statistical approaches produced highly concordant results for 373 top ranked SNPs that defined 126 chromosomal regions for the CA population. Similarly, in NM, 370 SNPs defined 138 genomic regions that were identified by all four approaches. When the two populations were combined (i.e., CA + NM) and analyzed, 324 SNPs defined 116 genomic regions that were associated with BRDC across all analytical methods. Heritability estimates for BRDC were 21% for both CA and NM as individual populations, but declined to 13% when the populations were combined. CONCLUSIONS: Four analytical approaches utilizing both single and multi-marker association methods revealed common genomic regions associated with BRDC susceptibility that can be further characterized and used for genomic selection. Moderate heritability estimates were observed for BRDC susceptibility in pre-weaned Holstein calves, thereby supporting the application of genomic selection to reduce the prevalence of BRDC in U.S. Holsteins.


Assuntos
Complexo Respiratório Bovino/genética , Loci Gênicos , Predisposição Genética para Doença , Desmame , Animais , Cruzamento , Bovinos , Feminino , Estudo de Associação Genômica Ampla , Masculino
17.
Anim Health Res Rev ; 15(2): 157-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25384903

RESUMO

The Bovine Respiratory Disease Coordinated Agricultural Project (BRD CAP) is a 5-year project funded by the United States Department of Agriculture (USDA), with an overriding objective to use the tools of modern genomics to identify cattle that are less susceptible to BRD. To do this, two large genome wide association studies (GWAS) were conducted using a case:control design on preweaned Holstein dairy heifers and beef feedlot cattle. A health scoring system was used to identify BRD cases and controls. Heritability estimates for BRD susceptibility ranged from 19 to 21% in dairy calves to 29.2% in beef cattle when using numerical scores as a semi-quantitative definition of BRD. A GWAS analysis conducted on the dairy calf data showed that single nucleotide polymorphism (SNP) effects explained 20% of the variation in BRD incidence and 17-20% of the variation in clinical signs. These results represent a preliminary analysis of ongoing work to identify loci associated with BRD. Future work includes validation of the chromosomal regions and SNPs that have been identified as important for BRD susceptibility, fine mapping of chromosomes to identify causal SNPs, and integration of predictive markers for BRD susceptibility into genetic tests and national cattle genetic evaluations.


Assuntos
Complexo Respiratório Bovino/genética , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Agricultura , Criação de Animais Domésticos , Animais , Bovinos , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
18.
Cell ; 159(4): 800-13, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417157

RESUMO

We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.


Assuntos
Evolução Biológica , Cromossomos de Mamíferos , Camundongos Endogâmicos C57BL/genética , Análise de Sequência de DNA , Cromossomo Y , Animais , Centrômero , Cromossomos Artificiais Bacterianos/genética , Feminino , Humanos , Masculino , Filogenia , Primatas/genética , Cromossomo X
19.
Sci Rep ; 4: 6546, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25306978

RESUMO

DNA methylation is a key epigenetic modification in mammals and plays important roles in muscle development. We sampled longissimus dorsi muscle (LDM) from a well-known elite native breed of Chinese Qinchuan cattle living within the same environment but displaying distinct skeletal muscle at the fetal and adult stages. We generated and provided a genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA for fetal and adult muscle studies. Integration analysis revealed a total of 77 and 1,054 negatively correlated genes with methylation in the promoter and gene body regions, respectively, in both the fetal and adult bovine libraries. Furthermore, we identified expression patterns of high-read genes that exhibit a negative correlation between methylation and expression from nine different tissues at multiple developmental stages of bovine muscle-related tissue or organs. In addition, we validated the MeDIP-Seq results by bisulfite sequencing PCR (BSP) in some of the differentially methylated promoters. Together, these results provide valuable data for future biomedical research and genomic and epigenomic studies of bovine skeletal muscle that may help uncover the molecular basis underlying economically valuable traits in cattle. This comprehensive map also provides a solid basis for exploring the epigenetic mechanisms of muscle growth and development.


Assuntos
Metilação de DNA/genética , Epigênese Genética , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , Animais , Bovinos , Ilhas de CpG , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transcriptoma
20.
BMC Genomics ; 15: 625, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25052253

RESUMO

BACKGROUND: The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation. RESULTS: Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution. CONCLUSIONS: We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals.


Assuntos
Evolução Molecular , Rearranjo Gênico/genética , Genômica/métodos , Cabras/genética , Mapeamento de Híbridos Radioativos/métodos , Animais , Bovinos , Cromossomos de Mamíferos/genética , Família Multigênica/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...