Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683904

RESUMO

We report the synthesis of poly(styrene-block-lactic acid) (PS-b-PLA) copolymers with triazole rings as a junction between blocks. These materials were prepared via a 'click' strategy which involved the reaction between azide-terminated poly(styrene) (PS-N3) and acetylene-terminated poly(D,L-lactic acid) (PLA-Ac), accomplished by copper-catalyzed azide-alkyne cycloaddition reaction. This synthetic approach has demonstrated to be effective to obtain specific copolymer structures with targeted self-assembly properties. We observed the self-assembly behavior of the PS-b-PLA thin films as induced by solvent vapor annealing (SVA), thermal annealing (TA), and hydrolysis of the as-spun substrates and monitored their morphological changes by means of different microscopic techniques. Self-assembly via SVA and TA proved to be strongly dependent on the pretreatment of the substrates. Microphase segregation of the untreated films yielded a pore size of 125 nm after a 45-min SVA. After selectively removing the PLA microdomains, the as-spun substrates exhibited the formation of pores on the surface, which can be a good alternative to form an ordered pattern of triazole functionalized porous PS at the mesoscale. Finally, as revealed by scanning electron microscopy-energy dispersive X-ray spectroscopy, the obtained triazole-functionalized PS-porous film exhibited some affinity to copper (Cu) in solution. These materials are suitable candidates to further study its metal-caption properties.

2.
Beilstein J Nanotechnol ; 12: 541-551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194890

RESUMO

The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...