Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Anesth Pain Med ; 24(1): 19-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362260

RESUMO

Background: This study investigated a safe and effective bolus dose and lockout time for patient-controlled sedation (PCS) with dexmedetomidine for dental treatments. The depth of sedation, vital signs, and patient satisfaction were investigated to demonstrate safety. Methods: Thirty patients requiring dental scaling were enrolled and randomly divided into three groups based on bolus doses and lockout times: group 1 (low dose group, bolus dose 0.05 µg/kg, 1-minute lockout time), group 2 (middle dose group, 0.1 µg/kg, 1-minute), and group 3 (high dose group, 0.2 µg/kg, 3-minute) (n = 10 each). ECG, pulse, oxygen saturation, blood pressure, end-tidal CO2, respiratory rate, and bispectral index scores (BIS) were measured and recorded. The study was conducted in two stages: the first involved sedation without dental treatment and the second included sedation with dental scaling. Patients were instructed to press the drug demand button every 10 s, and the process of falling asleep and waking up was repeated 1-5 times. In the second stage, during dental scaling, patients were instructed to press the drug demand button. Loss of responsiveness (LOR) was defined as failure to respond to auditory stimuli six times, determining sleep onset. Patient and dentist satisfaction were assessed before and after experimentation. Results: Thirty patients (22 males) participated in the study. Scaling was performed in 29 patients after excluding one who experienced dizziness during the first stage. The average number of drug administrations until first LOR was significantly lower in group 3 (2.8 times) than groups 1 and 2 (8.0 and 6.5 times, respectively). The time taken to reach the LOR showed no difference between groups. During the second stage, the average time required to reach the LOR during scaling was 583.4 seconds. The effect site concentrations (Ce) was significantly lower in group 1 than groups 2 and 3. In the participant survey on PCS, 8/10 in group 3 reported partial memory loss, whereas 17/20 in groups 1 and 2 recalled the procedure fully or partially. Conclusion: PCS with dexmedetomidine can provide a rapid onset of sedation, safe vital sign management, and minimal side effects, thus facilitating smooth dental sedation.

2.
Front Physiol ; 14: 1188678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700762

RESUMO

Introduction: We propose an automatic sleep stage scoring model, referred to as SeriesSleepNet, based on convolutional neural network (CNN) and bidirectional long short-term memory (bi-LSTM) with partial data augmentation. We used single-channel raw electroencephalography signals for automatic sleep stage scoring. Methods: Our framework was focused on time series information, so we applied partial data augmentation to learn the connected time information in small series. In specific, the CNN module learns the time information of one epoch (intra-epoch) whereas the bi-LSTM trains the sequential information between the adjacent epochs (inter-epoch). Note that the input of the bi-LSTM is the augmented CNN output. Moreover, the proposed loss function was used to fine-tune the model by providing additional weights. To validate the proposed framework, we conducted two experiments using the Sleep-EDF and SHHS datasets. Results and Discussion: The results achieved an overall accuracy of 0.87 and 0.84 and overall F1-score of 0.80 and 0.78 and kappa value of 0.81 and 0.78 for five-class classification, respectively. We showed that the SeriesSleepNet was superior to the baselines based on each component in the proposed framework. Our architecture also outperformed the state-of-the-art methods with overall F1-score, accuracy, and kappa value. Our framework could provide information on sleep disorders or quality of sleep to automatically classify sleep stages with high performance.

3.
Heliyon ; 9(8): e18466, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554776

RESUMO

The human respiratory systems can be affected by several diseases and it is associated with distinctive sounds. For advanced biomedical signal processing, one of the most complex issues is automated respiratory sound classification. In this research, five Hybrid Interpretable Strategies with Ensemble Techniques (HISET) which are quite interesting and robust are proposed for the purpose of respiratory sounds classification. The first approach is termed as an Ensemble GSSR technique which utilizes L2 Granger Analysis and the proposed Supportive Ensemble Empirical Mode Decomposition (SEEMD) technique and then Support Vector Machine based Recursive Feature Elimination (SVM-RFE) is used for feature selection and followed by classification with Machine Learning (ML) classifiers. The second approach proposed is the implementation of a novel Realm Revamping Sparse Representation Classification (RR-SRC) technique and third approach proposed is a Distance Metric dependent Variational Mode Decomposition (DM-VMD) with Extreme Learning Machine (ELM) classification process. The fourth approach proposed is with the usage of Harris Hawks Optimization (HHO) with a Scaling Factor based Pliable Differential Evolution (SFPDE) algorithm termed as HHO-SFPDE and it is classified with ML classifiers. The fifth or the final approach proposed analyzes the application of dimensionality reduction techniques with the proposed Gray Wolf Optimization based Support Vector Classification (GWO-SVC) and another parallel approach utilizes a similar kind of analysis with the Grasshopper Optimization Algorithm (GOA) based Sparse Autoencoder. The results are examined for ICBHI dataset and the best results are shown for the 2-class classification when the analysis is carried out with Manhattan distance-based VMD-ELM reporting an accuracy of 95.39%, and for 3-class classification Euclidean distance-based VMD-ELM reported an accuracy of 90.61% and for 4-class classification, Manhattan distance-based VMD-ELM reported an accuracy of 89.27%.

4.
Front Neurosci ; 17: 1168112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425001

RESUMO

One of the famous research areas in biomedical engineering and pattern recognition is finger movement classification. For hand and finger gesture recognition, the most widely used signals are the surface electromyogram (sEMG) signals. With the help of sEMG signals, four proposed techniques of finger movement classification are presented in this work. The first technique proposed is a dynamic graph construction and graph entropy-based classification of sEMG signals. The second technique proposed encompasses the ideas of dimensionality reduction utilizing local tangent space alignment (LTSA) and local linear co-ordination (LLC) with evolutionary algorithms (EA), Bayesian belief networks (BBN), extreme learning machines (ELM), and a hybrid model called EA-BBN-ELM was developed for the classification of sEMG signals. The third technique proposed utilizes the ideas of differential entropy (DE), higher-order fuzzy cognitive maps (HFCM), empirical wavelet transformation (EWT), and another hybrid model with DE-FCM-EWT and machine learning classifiers was developed for the classification of sEMG signals. The fourth technique proposed uses the ideas of local mean decomposition (LMD) and fuzzy C-means clustering along with a combined kernel least squares support vector machine (LS-SVM) classifier. The best classification accuracy results (of 98.5%) were obtained using the LMD-fuzzy C-means clustering technique classified with a combined kernel LS-SVM model. The second-best classification accuracy (of 98.21%) was obtained using the DE-FCM-EWT hybrid model with SVM classifier. The third best classification accuracy (of 97.57%) was obtained using the LTSA-based EA-BBN-ELM model.

5.
Front Artif Intell ; 6: 1156269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415937

RESUMO

A comprehensive analysis of an automated system for epileptic seizure detection is explained in this work. When a seizure occurs, it is quite difficult to differentiate the non-stationary patterns from the discharges occurring in a rhythmic manner. The proposed approach deals with it efficiently by clustering it initially for the sake of feature extraction by using six different techniques categorized under two different methods, e.g., bio-inspired clustering and learning-based clustering. Learning-based clustering includes K-means clusters and Fuzzy C-means (FCM) clusters, while bio-inspired clusters include Cuckoo search clusters, Dragonfly clusters, Firefly clusters, and Modified Firefly clusters. Clustered values were then classified with 10 suitable classifiers, and after the performance comparison analysis of the EEG time series, the results proved that this methodology flow achieved a good performance index and a high classification accuracy. A comparatively higher classification accuracy of 99.48% was achieved when Cuckoo search clusters were utilized with linear support vector machines (SVM) for epilepsy detection. A high classification accuracy of 98.96% was obtained when K-means clusters were classified with a naive Bayesian classifier (NBC) and Linear SVM, and similar results were obtained when FCM clusters were classified with Decision Trees yielding the same values. The comparatively lowest classification accuracy, at 75.5%, was obtained when Dragonfly clusters were classified with the K-nearest neighbor (KNN) classifier, and the second lowest classification accuracy of 75.75% was obtained when Firefly clusters were classified with NBC.

6.
Front Comput Neurosci ; 16: 1016516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465961

RESUMO

In comparison to other biomedical signals, electroencephalography (EEG) signals are quite complex in nature, so it requires a versatile model for feature extraction and classification. The structural information that prevails in the originally featured matrix is usually lost when dealing with standard feature extraction and conventional classification techniques. The main intention of this work is to propose a very novel and versatile approach for EEG signal modeling and classification. In this work, a sparse representation model along with the analysis of sparseness measures is done initially for the EEG signals and then a novel convergence of utilizing these sparse representation measures with Swarm Intelligence (SI) techniques based Hidden Markov Model (HMM) is utilized for the classification. The SI techniques utilized to compute the hidden states of the HMM are Particle Swarm Optimization (PSO), Differential Evolution (DE), Whale Optimization Algorithm (WOA), and Backtracking Search Algorithm (BSA), thereby making the HMM more pliable. Later, a deep learning methodology with the help of Convolutional Neural Network (CNN) was also developed with it and the results are compared to the standard pattern recognition classifiers. To validate the efficacy of the proposed methodology, a comprehensive experimental analysis is done over publicly available EEG datasets. The method is supported by strong statistical tests and theoretical analysis and results show that when sparse representation is implemented with deep learning, the highest classification accuracy of 98.94% is obtained and when sparse representation is implemented with SI-based HMM method, a high classification accuracy of 95.70% is obtained.

7.
Front Comput Neurosci ; 16: 900885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847966

RESUMO

To classify the texts accurately, many machine learning techniques have been utilized in the field of Natural Language Processing (NLP). For many pattern classification applications, great success has been obtained when implemented with deep learning models rather than using ordinary machine learning techniques. Understanding the complex models and their respective relationships within the data determines the success of such deep learning techniques. But analyzing the suitable deep learning methods, techniques, and architectures for text classification is a huge challenge for researchers. In this work, a Contiguous Convolutional Neural Network (CCNN) based on Differential Evolution (DE) is initially proposed and named as Evolutionary Contiguous Convolutional Neural Network (ECCNN) where the data instances of the input point are considered along with the contiguous data points in the dataset so that a deeper understanding is provided for the classification of the respective input, thereby boosting the performance of the deep learning model. Secondly, a swarm-based Deep Neural Network (DNN) utilizing Particle Swarm Optimization (PSO) with DNN is proposed for the classification of text, and it is named Swarm DNN. This model is validated on two datasets and the best results are obtained when implemented with the Swarm DNN model as it produced a high classification accuracy of 97.32% when tested on the BBC newsgroup text dataset and 87.99% when tested on 20 newsgroup text datasets. Similarly, when implemented with the ECCNN model, it produced a high classification accuracy of 97.11% when tested on the BBC newsgroup text dataset and 88.76% when tested on 20 newsgroup text datasets.

8.
Biomed Res Int ; 2022: 2052061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663047

RESUMO

One of the major reasons of mortality in human beings is cancer, and there is an absolute necessity for doctors to identify and treat a person suffering from it. Leukemia is a group of blood cancers that usually originates in the bone marrow and results in very high number of abnormal cells. For the diagnosis of cancer, microarray data serves as an important clinical application and serves as a great aid to the entire medical community. The dimensionality of the microarray data is too high, and so selection of suitable genes is quite an important step for the improvement of data classification. Therefore, for the prediction and diagnosis of cancer, there is an utmost necessity to select the most informative genes. In this work, Minimum Redundancy Maximum Relevance (MRMR), Signal to Noise Ratio (SNR), Multivariate Error Weight Uncorrelated Shrunken Centroid (EWUSC), and multivariate correlation-based feature selection (CFS) are chosen as initial feature selection techniques. Then, to select the most informative genes, five different kinds of evolutionary optimization techniques too are incorporated here such as African Buffalo Optimization (ABO), Artificial Bee Colony Optimization (ABCO), Cockroach Swarm Optimization (CSO), Imperialist Competitive Optimization (ICO), and Social Spider Optimization (SSO). Finally, the optimized values are fed through classification process and the best results are obtained when multivariate CFS with SSO is utilized and classified with Probabilistic Neural Network (PNN), and a high classification accuracy of 95.70% is obtained.


Assuntos
Leucemia , Neoplasias , Algoritmos , Humanos , Leucemia/diagnóstico , Leucemia/genética , Análise em Microsséries , Neoplasias/genética
9.
Front Hum Neurosci ; 16: 895761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721347

RESUMO

The vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well. To uncover the highly useful information for neural classification activities, EEG studies incorporated with machine learning provide good results. In this study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based Estimation of Robust Parameters is proposed for efficient feature extraction of the biosignals and to understand the essential information it has for analyzing the brain functionality. The essential features in terms of parameter components are extracted using the developed hybrid model, and a specialized hybrid swarm technique called Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature selection. To make the EEG more practical and to be used in a plethora of applications, the robust classification of these signals is necessary thereby relying less on the trained professionals. Therefore, the classification is done initially using the proposed Zero Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a deep learning methodology, and the results are compared with other standard machine learning techniques. This proposed flow of methodology is validated on a few standard Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for epileptic dataset and 98.35% is obtained for schizophrenia dataset.

10.
Sensors (Basel) ; 22(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591246

RESUMO

Manual sleep stage scoring is usually implemented with the help of sleep specialists by means of visual inspection of the neurophysiological signals of the patient. As it is a very hectic task to perform, automated sleep stage classification systems were developed in the past, and advancements are being made consistently by researchers. The various stages of sleep are identified by these automated sleep stage classification systems, and it is quite an important step to assist doctors for the diagnosis of sleep-related disorders. In this work, a holistic strategy named as clustering and dimensionality reduction with feature extraction cum selection for classification along with deep learning (CDFCD) is proposed for the classification of sleep stages with EEG signals. Though the methodology follows a similar structural flow as proposed in the past works, many advanced and novel techniques are proposed under each category in this work flow. Initially, clustering is applied with the help of hierarchical clustering, spectral clustering, and the proposed principal component analysis (PCA)-based subspace clustering. Then the dimensionality of it is reduced with the help of the proposed singular value decomposition (SVD)-based spectral algorithm and the standard variational Bayesian matrix factorization (VBMF) technique. Then the features are extracted and selected with the two novel proposed techniques, such as the sparse group lasso technique with dual-level implementation (SGL-DLI) and the ridge regression technique with limiting weight scheme (RR-LWS). Finally, the classification happens with the less explored multiclass Gaussian process classification (MGC), the proposed random arbitrary collective classification (RACC), and the deep learning technique using long short-term memory (LSTM) along with other conventional machine learning techniques. This methodology is validated on the sleep EDF database, and the results obtained with this methodology have surpassed the results of the previous studies in terms of the obtained classification accuracy reporting a high accuracy of 93.51% even for the six-classes classification problem.


Assuntos
Eletroencefalografia , Fases do Sono , Transtornos do Sono-Vigília , Automação , Teorema de Bayes , Aprendizado Profundo , Eletroencefalografia/métodos , Saúde Holística , Humanos , Aprendizado de Máquina , Análise de Componente Principal , Sono/fisiologia , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/classificação , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/fisiopatologia
11.
Front Physiol ; 13: 825612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237180

RESUMO

Disease symptoms often contain features that are not routinely recognized by patients but can be identified through indirect inspection or diagnosis by medical professionals. Telemedicine requires sufficient information for aiding doctors' diagnosis, and it has been primarily achieved by clinical decision support systems (CDSSs) utilizing visual information. However, additional medical diagnostic tools are needed for improving CDSSs. Moreover, since the COVID-19 pandemic, telemedicine has garnered increasing attention, and basic diagnostic tools (e.g., classical examination) have become the most important components of a comprehensive framework. This study proposes a conceptual system, iApp, that can collect and analyze quantified data based on an automatically performed inspection, auscultation, percussion, and palpation. The proposed iApp system consists of an auscultation sensor, camera for inspection, and custom-built hardware for automatic percussion and palpation. Experiments were designed to categorize the eight abdominal divisions of healthy subjects based on the system multi-modal data. A deep multi-modal learning model, yielding a single prediction from multi-modal inputs, was designed for learning distinctive features in eight abdominal divisions. The model's performance was evaluated in terms of the classification accuracy, sensitivity, positive predictive value, and F-measure, using epoch-wise and subject-wise methods. The results demonstrate that the iApp system can successfully categorize abdominal divisions, with the test accuracy of 89.46%. Through an automatic examination of the iApp system, this proof-of-concept study demonstrates a sophisticated classification by extracting distinct features of different abdominal divisions where different organs are located. In the future, we intend to capture the distinct features between normal and abnormal tissues while securing patient data and demonstrate the feasibility of a fully telediagnostic system that can support abnormality diagnosis.

12.
Comput Intell Neurosci ; 2021: 9425655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603437

RESUMO

To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis. Therefore, a huge quantity of detailed patient information is present in the medical text, and it is quite a huge challenge to process it efficiently. In this work, a medical text classification paradigm, using two novel deep learning architectures, is proposed to mitigate the human efforts. The first approach is that a quad channel hybrid long short-term memory (QC-LSTM) deep learning model is implemented utilizing four channels, and the second approach is that a hybrid bidirectional gated recurrent unit (BiGRU) deep learning model with multihead attention is developed and implemented successfully. The proposed methodology is validated on two medical text datasets, and a comprehensive analysis is conducted. The best results in terms of classification accuracy of 96.72% is obtained with the proposed QC-LSTM deep learning model, and a classification accuracy of 95.76% is obtained with the proposed hybrid BiGRU deep learning model.


Assuntos
Aprendizado Profundo , Atenção , Humanos , Aprendizado de Máquina , Processamento de Linguagem Natural , Redes Neurais de Computação
13.
J Healthc Eng ; 2021: 6680424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373776

RESUMO

In the field of bioinformatics, feature selection in classification of cancer is a primary area of research and utilized to select the most informative genes from thousands of genes in the microarray. Microarray data is generally noisy, is highly redundant, and has an extremely asymmetric dimensionality, as the majority of the genes present here are believed to be uninformative. The paper adopts a methodology of classification of high dimensional lung cancer microarray data utilizing feature selection and optimization techniques. The methodology is divided into two stages; firstly, the ranking of each gene is done based on the standard gene selection techniques like Information Gain, Relief-F test, Chi-square statistic, and T-statistic test. As a result, the gathering of top scored genes is assimilated, and a new feature subset is obtained. In the second stage, the new feature subset is further optimized by using swarm intelligence techniques like Grasshopper Optimization (GO), Moth Flame Optimization (MFO), Bacterial Foraging Optimization (BFO), Krill Herd Optimization (KHO), and Artificial Fish Swarm Optimization (AFSO), and finally, an optimized subset is utilized. The selected genes are used for classification, and the classifiers used here are Naïve Bayesian Classifier (NBC), Decision Trees (DT), Support Vector Machines (SVM), and K-Nearest Neighbour (KNN). The best results are shown when Relief-F test is computed with AFSO and classified with Decision Trees classifier for hundred genes, and the highest classification accuracy of 99.10% is obtained.


Assuntos
Algoritmos , Neoplasias Pulmonares , Animais , Teorema de Bayes , Inteligência , Neoplasias Pulmonares/genética , Máquina de Vetores de Suporte
14.
Sci Robot ; 5(46)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967991

RESUMO

The game of curling can be considered a good test bed for studying the interaction between artificial intelligence systems and the real world. In curling, the environmental characteristics change at every moment, and every throw has an impact on the outcome of the match. Furthermore, there is no time for relearning during a curling match due to the timing rules of the game. Here, we report a curling robot that can achieve human-level performance in the game of curling using an adaptive deep reinforcement learning framework. Our proposed adaptation framework extends standard deep reinforcement learning using temporal features, which learn to compensate for the uncertainties and nonstationarities that are an unavoidable part of curling. Our curling robot, Curly, was able to win three of four official matches against expert human teams [top-ranked women's curling teams and Korea national wheelchair curling team (reserve team)]. These results indicate that the gap between physics-based simulators and the real world can be narrowed.

15.
PLoS One ; 14(7): e0219238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31314775

RESUMO

For a comprehensive understanding of the nervous system, several previous studies have examined the network connections between the brain and the heart in diverse conditions. In this study, we identified coupling between the brain and the heart along the continuum of sedation levels, but not in discrete sedation levels (e. g., wakefulness, conscious sedation, and deep sedation). To identify coupling between the brain and the heart during sedation, we induced several depths of sedation using patient-controlled sedation with propofol and midazolam. We performed electroencephalogram (EEG) spectral analysis and extracted the instantaneous heart rate (HR) from the electrocardiogram (ECG). EEG spectral power dynamics and mean HR were compared along the continuum of sedation levels. We found that EEG sigma power was the parameter most sensitive to changes in the sedation level and was correlated with the mean HR under the effect of sedative agents. Moreover, we calculated the Granger causality (GC) value to quantify brain-heart coupling at each sedation level. Additionally, the GC analysis revealed noticeably different strengths and directions of causality among different sedation levels. In all the sedation levels, GC values from the brain to the heart (GCb→h) were higher than GC values from the heart to the brain (GCh→b). Moreover, the mean GCb→h increased as the sedation became deeper, resulting in higher GCb→h values in deep sedation (1.97 ± 0.18 in propofol, 2.02 ± 0.15 in midazolam) than in pre-sedation (1.71 ± 0.13 in propofol, 1.75 ± 0.11 in midazolam; p < 0.001). These results show that coupling between brain and heart activities becomes stronger as sedation becomes deeper, and that this coupling is more attributable to the brain-heart direction than to the heart-brain direction. These findings provide a better understanding of the relationship between the brain and the heart under specific conditions, namely, different sedation states.


Assuntos
Encéfalo/efeitos dos fármacos , Sedação Consciente/métodos , Sedação Profunda/métodos , Coração/efeitos dos fármacos , Midazolam/administração & dosagem , Propofol/administração & dosagem , Vigília/efeitos dos fármacos , Adulto , Anestésicos , Eletrocardiografia , Eletroencefalografia , Feminino , Frequência Cardíaca , Humanos , Hipnóticos e Sedativos/administração & dosagem , Masculino , Adulto Jovem
16.
IEEE Trans Neural Syst Rehabil Eng ; 26(7): 1443-1459, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985154

RESUMO

In this paper, we propose a highly accurate and fast spelling system that employs multi-modal electroencephalography-electrooculography (EEG-EOG) signals and visual feedback technology. Over the last 20 years, various types of speller systems have been developed in brain-computer interface and EOG/eye-tracking research; however, these conventional systems have a tradeoff between the spelling accuracy (or decoding) and typing speed. Healthy users and physically challenged participants, in particular, may become exhausted quickly; thus, there is a need for a speller system with fast typing speed while retaining a high level of spelling accuracy. In this paper, we propose the first hybrid speller system that combines EEG and EOG signals with visual feedback technology so that the user and the speller system can act cooperatively for optimal decision-making. The proposed spelling system consists of a classic row-column event-related potential (ERP) speller, an EOG command detector, and visual feedback modules. First, the online ERP speller calculates classification probabilities for all candidate characters from the EEG epochs. Second, characters are sorted by their probability, and the characters with the highest probabilities are highlighted as visual feedback within the row-column spelling layout. Finally, the user can actively select the character as the target by generating an EOG command. The proposed system shows 97.6% spelling accuracy and an information transfer rate of 39.6 (±13.2) [bits/min] across 20 participants. In our extended experiment, we redesigned the visual feedback and minimized the number of channels (four channels) in order to enhance the speller performance and increase usability. Most importantly, a new weighted strategy resulted in 100% accuracy and a 57.8 (±23.6) [bits/min] information transfer rate across six participants. This paper demonstrates that the proposed system can provide a reliable communication channel for practical speller applications and may be used to supplement existing systems.


Assuntos
Interfaces Cérebro-Computador , Auxiliares de Comunicação para Pessoas com Deficiência , Eletroencefalografia/métodos , Eletroculografia/métodos , Retroalimentação Sensorial , Adulto , Calibragem , Tomada de Decisões/fisiologia , Potenciais Evocados P300 , Movimentos Oculares , Feminino , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
17.
IEEE Trans Neural Syst Rehabil Eng ; 26(2): 334-343, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28809703

RESUMO

Most event-related potential (ERP)-based brain-computer interface (BCI) spellers primarily use matrix layouts and generally require moderate eye movement for successful operation. The fundamental objective of this paper is to enhance the perceptibility of target characters by introducing motion stimuli to classical rapid serial visual presentation (RSVP) spellers that do not require any eye movement, thereby applying them to paralyzed patients with oculomotor dysfunctions. To test the feasibility of the proposed motion-based RSVP paradigm, we implemented three RSVP spellers: 1) fixed-direction motion (FM-RSVP); 2) random-direction motion (RM-RSVP); and 3) (the conventional) non-motion stimulation (NM-RSVP), and evaluated the effect of the three different stimulation methods on spelling performance. The two motion-based stimulation methods, FM- and RM-RSVP, showed shorter P300 latency and higher P300 amplitudes (i.e., 360.4-379.6 ms; 5.5867- ) than the NM-RSVP (i.e., 480.4 ms; ). This led to higher and more stable performances for FM- and RM-RSVP spellers than NM-RSVP speller (i.e., 79.06±6.45% for NM-RSVP, 90.60±2.98% for RM-RSVP, and 92.74±2.55% for FM-RSVP). In particular, the proposed motion-based RSVP paradigm was significantly beneficial for about half of the subjects who might not accurately perceive rapidly presented static stimuli. These results indicate that the use of proposed motion-based RSVP paradigm is more beneficial for target recognition when developing BCI applications for severely paralyzed patients with complex ocular dysfunctions.


Assuntos
Interfaces Cérebro-Computador , Fixação Ocular/fisiologia , Adulto , Auxiliares de Comunicação para Pessoas com Deficiência , Eletroencefalografia , Desenho de Equipamento , Potenciais Evocados P300 , Movimentos Oculares , Feminino , Voluntários Saudáveis , Humanos , Masculino , Paralisia/reabilitação , Desempenho Psicomotor , Adulto Jovem
18.
Sci Rep ; 7(1): 16791, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196672

RESUMO

Reliable electroencephalography (EEG) signatures of transitions between consciousness and unconsciousness under anaesthesia have not yet been identified. Herein we examined network changes using graph theoretical analysis of high-density EEG during patient-titrated propofol-induced sedation. Responsiveness was used as a surrogate for consciousness. We divided the data into five states: baseline, transition into unresponsiveness, unresponsiveness, transition into responsiveness, and recovery. Power spectral analysis showed that delta power increased from responsiveness to unresponsiveness. In unresponsiveness, delta waves propagated from frontal to parietal regions as a traveling wave. Local increases in delta connectivity were evident in parietal but not frontal regions. Graph theory analysis showed that increased local efficiency could differentiate the levels of responsiveness. Interestingly, during transitions of responsive states, increased beta connectivity was noted relative to consciousness and unconsciousness, again with increased local efficiency. Abrupt network changes are evident in the transitions in responsiveness, with increased beta band power/connectivity marking transitions between responsive states, while the delta power/connectivity changes were consistent with the fading of consciousness using its surrogate responsiveness. These results provide novel insights into the neural correlates of these behavioural transitions and EEG signatures for monitoring the levels of consciousness under sedation.


Assuntos
Estado de Consciência/efeitos dos fármacos , Hipnóticos e Sedativos/administração & dosagem , Propofol/administração & dosagem , Inconsciência/induzido quimicamente , Eletroencefalografia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiologia , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiologia , Propofol/farmacologia , Adulto Jovem
19.
PLoS One ; 12(11): e0187743, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121108

RESUMO

On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used.


Assuntos
Estado de Consciência/efeitos dos fármacos , Eletroencefalografia , Hipnóticos e Sedativos/farmacologia , Midazolam/farmacologia , Propofol/farmacologia , Processamento de Sinais Assistido por Computador , Análise Espaço-Temporal , Adulto , Estado de Consciência/fisiologia , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho
20.
J Neural Eng ; 13(1): 016014, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695712

RESUMO

OBJECTIVE: Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. APPROACH: We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. MAIN RESULTS: The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. SIGNIFICANCE: These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Estimulação Luminosa/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Mapeamento Encefálico/métodos , Feminino , Fusão Flicker/fisiologia , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...