Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
BMC Microbiol ; 23(1): 154, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237381

RESUMO

BACKGROUND: Allergic rhinitis (AR) is characterized by airway inflammation in nasal mucosa from inhaled allergens and interleukin (IL)-33 is the potent inducer of Th2 inflammation in allergic nasal epithelium. Staphylococcus epidermidis is one of the most abundant colonizers of the healthy human nasal mucosa and might impact the allergen-induced inflammatory responses in the nasal epithelium. Thus, we sought to characterize the mechanism of S. epidermidis regulating Th2 inflammation and IL-33 production in AR nasal mucosa. RESULTS: The AR symptoms were alleviated and eosinophilic infiltration, serum IgE levels, and Th2 cytokines were significantly decreased in OVA-sensitized AR mice in response to human nasal commensal S. epidermidis. The inoculation of S. epidermidis to normal human nasal epithelial cells reduced IL-33 and GATA3 transcriptions and also reduced IL-33 and GATA3 expression in AR nasal epithelial (ARNE) cells and the nasal mucosa of AR mice. Our data exhibited that the cellular necroptosis of ARNE cells might be involved in IL-33 production and inoculation of S. epidermidis decreased the phosphorylation of necroptosis enzymes in ARNE cells, which was related to the reduction of IL-33 production. CONCLUSIONS: We present that human nasal commensal S. epidermidis reduces allergic inflammation by suppressing IL-33 production in nasal epithelium. Our findings indicate that S. epidermidis serves a role in blocking allergen-induced cellular necroptosis in allergic nasal epithelium which might be a key mechanism of reduction of IL-33 and Th2 inflammation.


Assuntos
Rinite Alérgica , Staphylococcus epidermidis , Humanos , Animais , Camundongos , Interleucina-33 , Necroptose , Imunoglobulina E/metabolismo , Células Th2 , Mucosa Nasal , Alérgenos , Inflamação , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 13: 1009424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524125

RESUMO

Introduction: The innate immune responses of upper airway could further our understanding toward antiviral strategies against SARS-CoV-2. We characterize the potential of interferon (IFN)-λ as an innate immune inducer for the rapid clearance of SARS-CoV-2 in the lung and the therapeutic efficacy of intranasal inoculation of IFN-λ to resolve acute lung infection. Methods: Syrian golden hamsters were infected with SARS-CoV-2 and the dynamics of SARS-CoV-2 infection depending on IFN-λ inoculation were tested. Results: SARS-CoV-2-infected Syrian golden hamsters exhibited a significant decrease in body weight and high viral mRNA level at 3 days post-infection (dpi). Although viral replication was reduced completely from 7 dpi, the pathologic findings remained prominent until 14 dpi in the lung of hamsters. The transcription of IFN-λ was significantly induced in response to SARS-CoV-2 infection with the increase of IFN-stimulated genes. Intranasal inoculation of IFN-λ restricted SARS-CoV-2 replication in the lungs of infected completely from 3 dpi with markedly reduction of inflammatory cytokines. The transcriptional phenotypes were altered to the direction of damage repair and tissue remodeling in the lungs of SARS-CoV-2-infected hamsters following intranasal inoculation of IFN-λ, which improved SARS-CoV-2-caused lung damage. Conclusion: Collectively, our findings suggest that IFN-λ might be a potent innate immune inducer in the lung and intranasal inoculation of IFN-λ resolves SARS-CoV-2 infection with rapid viral clearance and improvement of lung damage.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , COVID-19/patologia , Interferon lambda , Carga Viral , Mesocricetus , Pulmão
5.
Int Immunopharmacol ; 112: 109180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030690

RESUMO

Remarkable progress has recently been achieved to identify the biological function and potential value of novel therapeutic targets for the effective control of allergic asthma. Interferon (IFN)-λ has been suggested to restrict chronic inflammation in the lungs of asthmatic mice and we sought to determine the contribution of IFN-λ as an asthma therapeutic. We show that inhaled IFN-λ can restrict Th2 and Th17 inflammation in the lungs of asthmatic mice, accompanied with alteration of IL-10 secretion. BALB/C mice were used for an asthmatic mouse model with OVA. Recombinant IFN-λs (IFN-λ2: 2 µg, IFN-λ3: 2 µg) were inoculated into asthmatic mice after OVA challenge by intranasal delivery. Lungs of asthmatic mice were severely inflamed, with extensive inflammatory cell infiltration and increased goblet cell metaplasia with higher total lung resistance. Transcription of IL-4, IL-5, IL-13, and IL-17A was significantly higher until five days after the final OVA challenge. Asthmatic mice were administered recombinant IFN-λ via inhalation three times after the last challenge and the asthmatic mice showed improvement in lung histopathologic findings, and total lung resistance was maintained under normal range. IFN-λ inhalation exhibited significant decreases in Th2 and Th17 cytokine levels, and the populations of Th2 and Th17 cells were recovered from the lungs of asthmatic mice. Additionally, increase in IL-10 secretion from CD4 + Th cells population was observed in response to inhaled delivery of IFN-λ along with alterations in Th2 and Th17 cell-derived inflammation. Our findings show that inhaled delivery of IFN-λ can restrict airway inflammation in the lungs of asthmatic mice by controlling Th2- and Th17-mediated responses accompanied by regulation of IL-10 secretion even after asthma development.


Assuntos
Asma , Células Th17 , Camundongos , Animais , Interleucina-17 , Interleucina-13 , Interleucina-10/uso terapêutico , Interleucina-5 , Interleucina-4 , Ovalbumina , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar , Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas , Modelos Animais de Doenças , Interferons/uso terapêutico , Imunidade , Células Th2
6.
NPJ Biofilms Microbiomes ; 8(1): 26, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418111

RESUMO

Our recent study presented that human nasal commensal Staphylococcus epidermidis could potentiate antiviral immunity in the nasal mucosa through interferon-related innate responses. Here, we found that human nasal commensal S. epidermidis promoted protease-protease inhibitor balance in favor of the host and prevented influenza A virus (IAV) replication in the nasal mucosa and lungs. A relatively higher induction of Serpine1 exhibited in S. epidermidis-inoculated nasal epithelium and S. epidermidis-induced Serpine1 significantly decreased the expression of serine proteases. Furthermore, the transcription of urokinase plasminogen activator (uPA) and Serpine1 was biologically relevant in S. epidermidis-inoculated nasal epithelium, and the induction of uPA might be related to the sequential increase of Serpine1 in human nasal epithelium. Our findings reveal that human nasal commensal S. epidermidis manipulates the cellular environment lacking serine proteases in the nasal epithelium through Serpine1 induction and disturbs IAV spread to the lungs at the level of the nasal mucosa.


Assuntos
Vírus da Influenza A , Mucosa Nasal , Staphylococcus epidermidis , Internalização do Vírus , Humanos , Vírus da Influenza A/fisiologia , Interferons , Mucosa Nasal/microbiologia , Mucosa Nasal/virologia , Serina Proteases
7.
iScience ; 24(10): 103172, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34604720

RESUMO

Emerging evidence indicates that severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is transmitted through the human nasal mucosa via the principal entry factors angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which are highly expressed in the nasal epithelium. Therefore, the biologics targeting host entry factors on human nasal mucosa will be necessary for complete control of SARS-CoV-2. Our data reveal that ACE2 was more abundant in human nasal mucosa than lung tissue. Both ACE2 and TMPRSS2 transcriptions significantly decreased in nasal epithelium in response to S. epidermidis and were relatively lower in human nasal mucus with large numbers of S. epidermidis. ACE2 transcription was also reduced in nasal epithelium in response to nasal symbiont S. aureus. This study proposes that Staphylococcus species nasal commensals might potentially restrict SARS-CoV-2 entry to the nasal epithelium via down regulation of cellular receptors coupled with reduction of principal host protease.

8.
BMC Microbiol ; 20(1): 301, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028252

RESUMO

BACKGROUND: The host-microbial commensalism can shape the innate immune responses in respiratory mucosa and nasal microbiome also modulates front-line immune mechanism in the nasal mucosa. Inhaled allergens encounter the host immune system first in the nasal mucosa, and microbial characteristics of nasal mucus directly impact the mechanisms of initial allergic responses in nasal epithelium. However, the roles of the nasal microbiome in allergic nasal mucosa remain uncertain. We sought to determine the distribution of nasal microbiomes in allergic nasal mucosa and elucidate the interplay between nasal microbiome Staphylococcus species and Th2 cytokines in allergic rhinitis (AR) models. RESULTS: Staphylococcus aureus (AR-SA) and S. epidermidis (AR-SE) were isolated from the nasal mucosa of patients with AR. The influence of nasal microbiome Staphylococcus species on allergic nasal mucosa was also tested with in vitro and in vivo AR models. Pyrosequencing data showed that colonization by S. epidermidis and S. aureus was more dominant in nasal mucus of AR subjects. The mRNA and protein levels of IL-33 and TSLP were significantly higher in AR nasal epithelial (ARNE) cells which were cultured from nasal mucosa of AR subjects, and exposure of ARNE cells to AR-SA reduced IL-33 mRNA and secreted protein levels. Particularly, ovalbumin-driven AR mice inoculated with AR-SA by intranasal delivery exhibited significantly reduced IL-33 in their nasal mucosa. In the context of these results, allergic symptoms and Th2 cytokine levels were significantly downregulated after intranasal inoculation of AR-SA in vivo AR mice. CONCLUSION: Colonization by Staphylococcus species was more dominant in allergic nasal mucosa, and nasal commensal S. aureus from subjects with AR mediates anti-allergic effects by modulating IL-33-dependent Th2 inflammation. The results demonstrate the role of host-bacterial commensalism in shaping human allergic inflammation.


Assuntos
Imunidade Inata , Mucosa Nasal/imunologia , Rinite Alérgica/imunologia , Staphylococcus aureus/imunologia , Staphylococcus epidermidis/imunologia , Simbiose/imunologia , Animais , Corynebacterium/crescimento & desenvolvimento , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Enterobacter aerogenes/crescimento & desenvolvimento , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Expressão Gênica , Humanos , Interleucina-33/genética , Interleucina-33/imunologia , Camundongos Endogâmicos BALB C , Micrococcus luteus/crescimento & desenvolvimento , Muco/imunologia , Muco/microbiologia , Mucosa Nasal/microbiologia , Ovalbumina/administração & dosagem , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/microbiologia , Rinite Alérgica/patologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento
9.
Antiviral Res ; 180: 104860, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32565134

RESUMO

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe respiratory in human with high mortality and it has been a challenge to determine optimum treatment for MERS-CoV-induced respiratory infection. Here, we observed the distribution of MERS-CoV receptors using human respiratory mucosa and also evaluated the contribution of interferon-lambdas (IFN-λs) in response to MERS-CoV infection using in vitro normal human nasal epithelial (NHNE) and bronchial epithelial (NHBE) cells. We found that the gene and protein expression of DPPIV, MERS-CoV receptor, were more dominantly located in nasal and bronchial epithelium although human nasal mucosa exhibited relatively lower DPPIV expression than lung parenchymal tissues. The quantitative mRNA level of the MERS-CoV envelope (upE) gene was significantly induced in MERS-CoV-infected cultured NHNE and NHBE cells until 3 days after infection. The induction of IFNs was identified in NHNE and NHBE cells after MERS-CoV infection and IFN-λs were predominantly increased in MERS-CoV-infected respiratory epithelial cells. Inoculation of IFN-λs to NHNE and NHBE cells suppressed MERS-CoV replication and in particular, IFN-λ4 showed a strong therapeutic effect in reducing MERS-CoV infection with higher induction of IFN-stimulated genes. Thus, IFN-λ has a decisive function in the respiratory epithelium that greatly limits MERS-CoV replication, and may be a key cytokine for better therapeutic outcomes against MERS-CoV infection in respiratory tract.


Assuntos
Antivirais/uso terapêutico , Interferons/uso terapêutico , Interleucinas/uso terapêutico , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Mucosa Respiratória/virologia , Replicação Viral/efeitos dos fármacos , Brônquios/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Células Epiteliais/virologia , Regulação Viral da Expressão Gênica , Humanos , Imunidade Inata/imunologia , Interferons/biossíntese , Interleucinas/biossíntese , Mucosa Laríngea/virologia , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Reação em Cadeia da Polimerase , Mucosa Respiratória/efeitos dos fármacos
10.
Am J Respir Cell Mol Biol ; 62(1): 95-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31318581

RESUMO

IL-17 family cytokines are directly involved in host immune responses and the critical mediators for host defense against infection or inflammation. IL-17C is highly expressed in respiratory epithelium and is induced after acute bacterial lung infection. However, the definite function of IL-17C induced by Pseudomonas aeruginosa (PAO1 strain) is not fully understood, and our study was designed to demonstrate IL-17C-induced immune response against PAO1 infection in nasal epithelium. Passage-2 normal human nasal epithelial (NHNE) cells were infected with PAO1 and the relationship between IL-17C-related immune responses and the iron absorption of PAO1, depending on inoculation of recombinant human IL-17C (rhIL-17C), was assessed by measuring the siderophore activity of PAO1. Microarray data showed that IL-17C expression increased 34.7 times at 8 hours postinfection (hpi) in NHNE cells, and IL-17C mRNA levels increased until 48 hpi. The PAO1 colonies significantly increased from 8 hpi in NHNE cells, and siderophore activity of PAO1 was enhanced in the supernatants of PAO1-infected NHNE cells. Interestingly, PAO1 colonies were reduced in PAO1-infected NHNE cells treated with rhIL-17C, and supernatants from NHNE cells treated with rhIL-17C also exhibited decreased PAO1 colonies. We found that the siderophore activity of PAO1 was significantly reduced in the supernatants of NHNE cells treated with rhIL-17C where LCN2 expression was highly elevated. Our findings indicate that IL-17C mediates an antibacterial effect against PAO1 by inhibiting siderophore activity in nasal epithelium. We propose that IL-17C might be an efficient mediator to suppress PAO1 infection through disturbing iron absorption of PAO1 in nasal epithelium.


Assuntos
Interleucina-17/imunologia , Mucosa Nasal/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Linhagem Celular , Células Epiteliais/imunologia , Humanos , RNA Mensageiro/imunologia , Sideróforos/imunologia
11.
Cytokine ; 119: 32-36, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861490

RESUMO

The possibility has been suggested that interferon (IFN)-λs can be induced rapidly for restricting respiratory viral infection in asthmatic mice and may modulate Th2-related immune responses that underlie the pathogenesis of asthma. We sought to determine the in vivo contribution of IFN-λs on decrease of Th2 cytokines in the respiratory tract of in vivo asthma. Lungs of asthmatic mice were severely inflamed, with extensive inflammatory cell infiltration and increased goblet cell metaplasia with higher total lung resistance. The mean protein levels of TSLP and IL-33 from BAL fluid of asthmatic mice were significantly higher until 7 days. Following the collection of lung tissue of 20 asthmatic mice, TSLP and IL-33 gene expressions inversely correlated with mRNA levels of IFN-λ2/3. Asthmatic mice were administered recombinant IFN-λ2/3 via the intranasal route and the mRNA levels of IFN-stimulated genes were elevated to an even greater extent in the lung tissue of the mice without intranasal IFN-λ2/3. Asthma-related histopathologic lung inflammation was significantly improved and total lung resistance was maintained within normal range in IFN-λ2/3-treated asthmatic mice. Moreover, IFN-λ2/3-treated asthmatic mice exhibited significant decrease of secreted protein levels of TSLP and IL-33 in the BAL fluid until 7 days after IFN administration. The current data provide compelling evidence that the compensation of IFN-λs can restrict the secretion of epithelial-derived Th2 cytokines, accompanied with reduced asthmatic immunopathology and IFN-λs are critical for limiting Th2-mediated allergic responses in allergic asthma.


Assuntos
Asma/imunologia , Citocinas/imunologia , Células Epiteliais/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Células Th2/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
12.
Br J Cancer ; 118(4): 534-545, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29360818

RESUMO

BACKGROUND: Adoptive transfer of genetically engineered T-cells to express antigen-specific T-cell receptor (TCR) is a feasible and effective therapeutic approach for numerous types of cancers, including Epstein-Barr virus (EBV)-associated malignancies. Here, we describe a TCR gene transfer regimen to rapidly and reliably generate T-cells specific to EBV-encoded latent membrane protein-1 (LMP1), which is a potential target for T-cell-based immunotherapy. METHODS: A novel TCR specific to LMP1 (LMP1-TCR) was isolated from HLA-A*0201 transgenic mice that were immunised with the minimal epitope LMP1166 (TLLVDLLWL), and LMP1-TCR-transduced peripheral blood lymphocytes were evaluated for functional specificities. RESULTS: Both human CD8 and CD4 T-cells expressing the LMP1-TCR provoked high levels of cytokine secretion and cytolytic activity towards peptide-pulsed and LMP1-expressing tumour cells. Notably, recognition of these T-cells to peptide-pulsed cells was maintained at low concentration of peptide, implying that the LMP1-TCR has high avidity. Infusion of these engineered T-cells revealed remarkable therapeutic effects and inhibition of tumour growth in a preclinical xenogeneic model. We observed explosive ex vivo proliferation of functional TCR-transduced T-cells with artificial antigen-presenting cells that express co-stimulatory molecules CD80 and 4-1BBL. CONCLUSIONS: These data suggest that the novel TCR-targeting LMP1 might allow the potential design of T-cell-based immunotherapeutic strategies against EBV-positive malignancies.


Assuntos
Antígeno HLA-A2/genética , Herpesvirus Humano 4/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/transplante , Proteínas da Matriz Viral/imunologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Terapia Genética , Humanos , Imunização , Células Jurkat , Células K562 , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia
13.
J Invest Dermatol ; 134(3): 704-711, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24025551

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is closely related to dysregulation of the T helper type 1 and 2 (Th1)/Th2 balance. A previous study showed that high molecular mass poly-γ-glutamate (γ-PGA) isolated from Bacillus subtilis sp. Chungkookjang induces the production of IL-12 from dendritic cells (DCs). Here, we investigated the effect of γ-PGA on AD-like skin disease using an Nc/Nga mouse model. In vitro, γ-PGA activated DCs and induced IL-12 production in mice. In vivo, oral administration of γ-PGA markedly reduced the AD symptoms, similar to the response seen in the dexamethasone (Dex)-treated group. Treatment with γ-PGA also decreased the serum levels of IgG1, the skin levels of Th2 cytokines, the extent of skin inflammation, and the accumulation of mast cells. Furthermore, γ-PGA was effective against established AD, significantly decreasing serum IgE and Th2 cytokines in the inflamed tissue. Interestingly, the production of IL-17A in splenocytes was also suppressed by γ-PGA, indicating that it inhibits both Th2 and Th17 immune responses. Collectively, these results suggest that oral administration of γ-PGA could be a therapeutic strategy for treating AD via the modulation of Th2-biased immune responses in an Nc/Nga mouse model.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Fármacos Dermatológicos/farmacologia , Interleucina-17/imunologia , Ácido Poliglutâmico/análogos & derivados , Células Th2/efeitos dos fármacos , Administração Oral , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Dermatite Atópica/genética , Fármacos Dermatológicos/administração & dosagem , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-17/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Ácido Poliglutâmico/administração & dosagem , Ácido Poliglutâmico/farmacologia , Células Th2/imunologia
14.
J Microbiol Biotechnol ; 23(9): 1339-46, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23867701

RESUMO

Conventional chemotherapeutic regimens often accompany severe side effects and fail to induce complete regression of chemoresistant or relapsing metastatic cancers. The need for establishing more efficacious anticancer strategies led to the development of a combined modality treatment of chemotherapy in conjunction with immunotherapy or radiotherapy. It has been reported that poly-gamma-glutamate (γ-PGA), a natural polymer composed of glutamic acids, increases antitumor activity by activating antigen-presenting cells and natural killer (NK) cells. Here, we investigated the antitumor effect of γ-PGA in combination with cyclophosphamide in a murine melanoma model. Whereas cyclophosphamide alone directly triggered apoptosis of tumor cells in vitro, γ-PGA did not show cytotoxicity in tumor cells. Instead, it activated macrophages, as reflected by the upregulation of surface activation markers and the secretion of proinflammatory factors, such as nitric oxide and tumor necrosis factor α. When the antitumor effects were examined in a mouse model, combined treatment with cyclophosphamide and γ-PGA markedly suppressed tumor growth and metastasis. Notably, γ-PGA treatment dramatically increased the NK cell population in lung tissues, coinciding with decreased metastasis and increased survival. These data collectively suggest that γ-PGA can act as an immunotherapeutic agent that exhibits a synergistic antitumor effect in combination with conventional chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Melanoma/tratamento farmacológico , Ácido Poliglutâmico/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Melanoma/patologia , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Ácido Poliglutâmico/administração & dosagem , Fator de Necrose Tumoral alfa/imunologia
15.
J Microbiol Biotechnol ; 23(1): 125-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314378

RESUMO

Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment of the influenza virus infection. Since the resistance to these drugs has been reported, the development of a new antiviral agent is necessary. In this study, we examined the antiviral efficacy of the plant extracts against the influenza A/PR/8/34 infection. In vitro, the antiviral activities of the plant extracts were investigated using the cell-based screening. Three plant extracts, Thuja orientalis, Aster spathulifolius, and Pinus thunbergii, were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. The antiviral activity of the plant extracts also increased as a function of the concentration of the extracts and these extracts significantly reduced the visible cytopathic effect caused by virus infections. Furthermore, the treatment with T. orientalis was shown to have a stronger inhibitory effect than that with A. spathulifolius or P. thunbergii. These results may suggest that T. orientalis has anti-influenza A/PR/8/34 activity.


Assuntos
Antivirais/farmacologia , Asteraceae/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Thuja/química , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Sobrevivência Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Cães , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...