Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765588

RESUMO

A composite of polymer blends-thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA)-and BaTiO3-SiC was fabricated. BaTiO3 particles were used to improve the dielectric properties of the composite materials, whereas SiC was used to enhance thermal conductivity without altering the dielectric properties; notably, SiC has a good dielectric constant. The surfaces of the filler particles, BaTiO3 and SiC particles, were activated; BaTiO3 was treated with methylene diphenyl diisocyanate (MDI) and SiC's surface was subjected to calcination and acid treatment, and hybrid fillers were prepared via solution mixing. The surface modifications were verified using Fourier transform infrared spectroscopy (the appearance of OH showed acid treatment of SiC, and the presence of NH, CH2, and OH groups indicated the functionalization of BaTiO3 particles). After the extruded products were cooled and dried, the specimens were fabricated using minimolding. The thermal stability of the final composites showed improvement. The dielectric constant improved relative to the main matrix at constant and variable frequencies, being about fivefold for 40% BaTiO3-SiC-TPU-PLA composites. Upon inclusion of 40 wt.% MDI functionalized BaTiO3-SiC particles, an improvement of 232% in thermal conductivity was attained, in comparison to neat TPU-PLA blends.

2.
Polymers (Basel) ; 12(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235303

RESUMO

In the present study, composites of water-soluble polyurethane/calcium carbonate (CaCO3) were prepared from a soft segment of hydroxyl-terminated polybutadiene (HTPB) and polyethylene glycol (PEG, average molecular weight = 4000) with aliphatic diisocyanates. The functionality of CaCO3 particles was modified using aminopropyltriethoxysilane (APTES), and was confirmed by Fourier-transform infrared spectroscopy (FTIR). The solubility, hydrophilic properties, and chemical structures of the composites were analyzed by water-solubility tests, contact angle measurements, and FTIR, respectively, and the successful production of the hydrophilic water-soluble polyurethane (WSPU) structure was demonstrated. The adhesion of surface-modified CaCO3 particles to the WSPU matrix and the thermal degradation properties of the neat WSPU and WSPU/CaCO3 composites were studied using field emission scanning electron microscopy (FE-SEM) and thermogravimetric analysis (TGA). The results demonstrated good adhesion of the surface-modified CaCO3 particles along with an improved thermal degradation temperature with the addition of CaCO3 particles to the WSPU matrix.

3.
Polymers (Basel) ; 11(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766317

RESUMO

In this study water-soluble polyurethane (WSPU) was synthesized from isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), 2-bis(hydroxymethyl) propionic acid or dimethylolpropionic acid (DMPA), butane-1,4-diol (BD), and triethylamine (TEA) using an acetone process. The water solubility was investigated by solubilizing the polymer in water and measuring the contact angle and the results indicated that water solubility and contact angle tendency were increased as the molecular weight of the soft segment decreased, the amount of emulsifier was increased, and soft segment to hard segment ratio was lower. The contact angle of samples without emulsifier was greater than 87°, while that of with emulsifier was less than 67°, indicating a shift from highly hydrophobic to hydrophilic. The WSPU was also analyzed using Fourier transform infrared spectroscopy (FT-IR) to identify the absorption of functional groups and further checked by X-ray photoelectron spectroscopy (XPS). The molecular weight of WSPU was measured using size-exclusion chromatography (SEC). The structure of the WSPU was confirmed by nuclear magnetic resonance spectroscopy (NMR). The thermal properties of WSPU were analyzed using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).

4.
Polymers (Basel) ; 11(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261899

RESUMO

The increase of miniaturization and rise of powerhouses has caused a need for high-performing thermal interface materials (TIMs) that can transfer heat in electronic packaging. In this study, a thermoplastic polyurethane (PU)/alumina composite was produced via twin extrusion and was suggested as a TIM. The surfaces of the alumina particles were modified by γ-aminopropyltriethoxysilane (APTES) and then evaluated using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The field emission scanning electron microscopy (FE-SEM) images revealed that the addition of surface-modified alumina was well adhered in the PU matrix. The tensile strength of the composite remained unchanged, while the Young's modulus showed improvement as compared to the pure PU. The elongation at the break decreased as the filler loading increased, due to the brittle behavior of the composite. The viscoelastic elastic property analysis results revealed that there was an increase in the storage modulus of the composite and the glass transition temperature curve shifted to the right. The thermal conductivity of the composite showed that there was an 80.6% improvement in thermal conductivity with the incorporation of 40% APTES-treated alumina particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...