Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 8(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640600

RESUMO

A vaccine will likely be one of the key tools for ending the HIV-1/AIDS epidemic by preventing HIV-1 spread within uninfected populations and achieving a cure for people living with HIV-1. The currently prevailing view of the vaccine field is to introduce protective antibodies, nevertheless, a vaccine to be effective may need to harness protective T cells. We postulated that focusing a T-cell response on the most vulnerable regions of the HIV-1 proteome while maximizing a perfect match between the vaccine and circulating viruses will control HIV-1 replication. We currently use a combination of replication-deficient simian (chimpanzee) adenovirus and poxvirus modified vaccinia virus Ankara to deliver bivalent conserved-mosaic immunogens to human volunteers. Here, we exploit the mRNA platform by designing tetravalent immunogens designated as HIVconsvM, and demonstrate that mRNA formulated in lipid nanoparticles induces potent, broad and polyfunctional T-cell responses in a pre-clinical model. These results support optimization and further development of this vaccine strategy in experimental medicine trials in humans.

2.
F1000 Med Rep ; 4: 15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22891077

RESUMO

Diabetes, a large and growing worldwide health concern, affects the functional mass of the pancreatic beta cell, which in turn affects the glucose regulation of the body. Successful transplantation of cadaveric islets and pancreata for patients with uncontrolled type 1 diabetes has provided proof-of-concept for the development of commercial cell therapy approaches to treat diabetes. Three broad issues must be addressed before surrogate insulin-producing cells can become a reality: the development of a surrogate beta-cell source, immunoprotection, and translation. Cell therapy for diabetes is a real possibility, but many questions remain; through the collaborative efforts of multiple stakeholders this may become a reality.

4.
Cell Stem Cell ; 3(6): 607-9, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19041777
5.
Recent Prog Horm Res ; 59: 51-71, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14749497

RESUMO

Abundant data now demonstrate that the growth of new blood vessels, termed angiogenesis, plays both pathological and beneficial roles in human disease. Based on these data, a tremendous effort has been undertaken to understand the molecular mechanisms that drive blood vessel growth in adult tissues. Tie2 recently was identified as a receptor tyrosine kinase expressed principally on vascular endothelium. Disrupting Tie2 function in mice resulted in embryonic lethality with defects in embryonic vasculature, suggesting a role in blood vessel maturation and maintenance. Based on these studies, we undertook a series of studies to probe the function of Tie2 in adult vasculature that will form the focus of this chapter. Consistent with a role in blood vessel growth in adult vasculature, Tie2 was upregulated and activated in the endothelium of rat ovary and in healing rat skin wounds, both areas of active angiogenesis. Moreover, Tie2 was upregulated in the endothelium of vascular "hot spots" in human breast cancer specimens. Surprisingly, Tie2 also was expressed and activated in the endothelium of all normal rat tissues examined, suggesting a role in maintenance of adult vasculature. To determine the functional role of Tie2 in tumor vasculature, a soluble Tie2 extracellular domain (ExTek) was designed that blocked the activation of Tie2 by its activating ligand, angiopoietin 1 (Ang1). Administration of recombinant ExTek protein or an ExTek adenovirus inhibited tumor growth and metastasis in rodent tumor models, demonstrating a functional role for Tie2 in pathological angiogenesis in adult tissues. To begin to understand the endothelial signaling pathways and cellular responses that mediate Tie2 function, we identified signaling molecules that are recruited to the activated, autophosphorylated Tie2 kinase domain. Two of these molecules, SHP2 and GRB2, are part of the pathway upstream of mitogen-activated protein kinase (MAPK) activation, a pathway that may be responsible for morphogenetic effects of Tie2 on endothelial cells. Another signaling molecule, p85, is responsible for recruitment of phosphatidylinositol 3 kinase (PI3-K) and activation of the Akt/PI3-K pathway. Akt/PI3-K has emerged as a critical pathway downstream of Tie2 that is necessary for cell survival effects as well as for chemotaxis, activation of endothelial nitric oxide synthase, and perhaps for anti-inflammatory effects of Tie2 activation. Taken together, these studies and many others demonstrate that the Tie2 pathway has important functions in adult tissues, in both quiescent vasculature and during angiogenesis, and help to validate the Tie2 pathway as a therapeutic target.


Assuntos
Vasos Sanguíneos/fisiologia , Receptor TIE-2/fisiologia , Transdução de Sinais , Animais , Endotélio Vascular/fisiologia , Humanos , Neoplasias/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...