Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 5(2): 444-50, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23252392

RESUMO

Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

2.
J Nanosci Nanotechnol ; 11(2): 1147-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456152

RESUMO

In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

3.
J Nanosci Nanotechnol ; 10(7): 4657-62, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21128474

RESUMO

Photonic crystals are ordered nanostructures that are designed to manipulate the propagation of light. The periodicity of a photonic crystal can be engineered to be highly reflective at selected wavelengths. In this work, a mono-layer and double-layer colloidal photonic crystal film were self-assembled on a glass substrate to be used as backreflectors in a dye-sensitized solar cell (DSSC). The colloidal photonic crystal film consists of different polystyrene monodispersed particles with sizes between 200 nm and 290 nm. Making use of flow controlled vertical deposition (FCVD) method, opaline films of Bragg's reflection wavelength between 450 nm to 750 nm were achieved. These wavelengths were designed to match the absorption spectrum of the Ruthenium-complex dye used in DSSC. An enhancement in incident photon-to-current conversion efficiency (IPCE) of the opaline backreflector DSSC of about 30% at Bragg's peak wavelength has been achieved.

4.
ACS Nano ; 4(8): 4753-61, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20666372

RESUMO

Novel peapod-like Co@carbon and Co(3)O(4)@carbon composite nanostructures have been successfully fabricated for the first time based on rational design and elaborate analyses. The nanostructures exhibit the unique feature of Co or Co(3)O(4) nanoparticles (20 nm) encapsulated inside and well-graphitized carbon layers coating outside. The peapod-like Co@carbon and Co(3)O(4)@carbon nanostructures exhibit intriguing morphologies, architectures, and chemical compositions. What is more important, the unique morphologies, architectures, and chemical compositions will lead to perfect performances in many applications. In this paper, a good example of Li-ion battery testing is given to demonstrate the superior stability and rate capability of the Co(3)O(4)@carbon. The peapod-like nanostructure of Co(3)O(4)@carbon demonstrates very high specific capacity (around 1000 mAh/g at the charge/discharge rate of 1C) and wonderful cyclability (at least 80% retention is available when cycled back from very high charge/discharge rate of 10C) during the galvanostatic cycling, indicating it as the promising candidate for Li-ion batteries' anodes. Additionally, the excellent electrochemical performance is significantly associated with the unique architecture in the samples, which verifies the feasibility of rational design of hierarchical materials for the actual applications. Meanwhile, the Co@carbon and Co(3)O(4)@carbon nanostructures demonstrate the regular and uniform distribution of magnetic nanoparticles in well-graphitized carbon fiber, which is a great achievement in the field of monodispersing and isolating magnetic nanoparticles. The prepared samples can also be potentially applied in other fields, such as gene delivery, catalysis, and magnetism.


Assuntos
Carbono/química , Cobalto/química , Nanoestruturas/química , Nanotecnologia/métodos , Óxidos/química , Eletricidade , Eletroquímica , Técnicas de Transferência de Genes , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
5.
Langmuir ; 26(10): 7093-100, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20099793

RESUMO

In the colloidal self-assembly of charged particles on surfaces with opposite polarity, disorder often dominates. In this report, we show that ionic strength, volume fraction, and solvent evaporation temperature can be optimized in the vertical deposition method to yield hexagonal close-packed monolayer arrays with positively charged colloids on negatively charged bare glass. We further extend our study to form well-defined binary two-dimensional superlattices with oppositely charged monolayers grown layer-by-layer. Our results suggest that the lack of particulate mobility in oppositely charged systems is the main cause of disorder, and maximum mobility is attained when all three growth parameters are finely adjusted to increase the time scale for the particles to stabilize and order during crystal growth in these attractive systems. A clear understanding and control of the collective behavior of highly mobile colloids could lead to the creation of greater diversity of nanoarchitectures.

6.
Langmuir ; 24(10): 5245-8, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18435554

RESUMO

To harness the full potential of colloidal self-assembly, the dynamics of the transition between colloids in suspension to a colloidal crystalline film should be better understood. In this report, the structural changes during the self-assembly process in a vertical configuration for colloids in the size range 200-400 nm are monitored in situ, using the transmission spectrum of the colloidal assembly treated as an emergent photonic crystal. It is found that there are several sequential stages of colloidal ordering: in suspension, with a larger lattice parameter than the solid state, in a close-packed wet state with solvent in the interstices, and, finally, in a close-packed dry state with air in the interstices. Assuming that these stages lead continuously from one to another, we can interpret colloidal crystallization as being initiated by interparticle forces in suspension first, followed by capillary forces. This result has implications for identifying the optimum conditions to obtain high-quality nanostructures of submicrometer-sized colloidal particles.

7.
Langmuir ; 22(3): 897-900, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16430245

RESUMO

Reflectance spectroscopy is utilized to monitor structural changes during the self-assembly of a monodisperse colloidal system at the meniscus of a sessile drop on an inert substrate. Treating the ordered colloidal structure as a photonic crystal is equivalent to monitoring the changes in the photonic band gap (PBG) as the colloidal system self-assembles heterogeneously into a crystal through solvent evaporation in ambient conditions. Using a modified Bragg's law model of the photonic crystal, we can trace the structural evolution of the self-assembling colloidal system. After a certain induction period, a face-centered cubic (FCC) structure emerges, albeit with a lattice parameter larger than that of a true close-packed structure. This FCC structure is maintained while the lattice parameter shrinks continuously with further increase in the colloidal concentration due to drying. When the structure reaches a lattice parameter 1.09 times the size of that of a true close-packed structure, it undergoes an abrupt decrease in lattice spacing, apparently similar to those reported for lattice-distortive martensitic transformations. This abrupt final lattice shrinkage agrees well with the estimated Debye screening length of the electric double layer of charged colloids and could be the fundamental reason behind the cracking commonly seen in colloidal crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...