Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(39): 6679-6696, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607821

RESUMO

It is widely accepted that Pavlovian fear conditioning requires activation of NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA). However, it was recently shown that activation of NMDAR in the BLA is only required for fear conditioning when danger occurs unexpectedly; it is not required for fear conditioning when danger occurs as expected. This study tested the hypothesis that NMDARs in the BLA are engaged for Pavlovian fear conditioning when an animal's predictions regarding danger are in error. In each experiment, rats (females in Experiment 1 and males in Experiments 2-5) were conditioned to fear one stimulus, S1, when it was paired with foot-shock (S1→shock), and 48 h later, a second stimulus, S2, when it was presented in sequence with the already-conditioned S1 and foot-shock (S2→S1→shock). Conditioning to S2 occurred under a BLA infusion of the NMDAR antagonist, D-AP5 or vehicle. The subsequent tests of freezing to S2 alone and S1 alone revealed that the antagonist had no effect on conditioning to S2 when the shock occurred exactly as predicted by the S1, but disrupted this conditioning when the shock occurred earlier/later than predicted by S1, or at a stronger/weaker intensity. These results imply that errors in the timing or intensity of a predicted foot-shock engage NMDARs in the BLA for Pavlovian fear conditioning. They are discussed in relation to theories which propose a role for prediction error in determining how experiences are organized in memory and how activation of NMDAR in the BLA might contribute to this organization.SIGNIFICANCE STATEMENT This study is significant in showing that prediction error determines how a new experience is encoded with respect to a past experience and, thereby, whether NMDA receptors (NMDARs) in the basolateral amygdala complex (BLA) encode the new experience. When prediction error is small (e.g., danger occurs as and when expected), the new experience is encoded together with a past experience as part of the same "mental model," and NMDAR activation in the BLA is not needed for this encoding. By contrast, when prediction error is large (e.g., danger occurs at an unexpected intensity or time), the new experience is encoded separately from the past experience as part of a new mental model, and NMDAR activation in the BLA is needed for this encoding.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Masculino , Ratos , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia
2.
Neurosci Biobehav Rev ; 132: 1197-1204, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718047

RESUMO

Sensory preconditioning protocols can be used to assess how the brain integrates memories that share common features. In these protocols, animals are first exposed to pairings of two relatively innocuous stimuli, S2 and S1 (stage 1), and then to pairings of one of these stimuli, S1, with an event of motivational significance (stage 2). Following this training, test presentations of S2 elicit responses appropriate to the motivationally significant event, and these responses are taken to indicate formation of distinct S2-S1 and S1-event memories that are integrated in some way to generate that responding. This paper reviews studies of sensory preconditioning in rats, mice, rabbits and people to determine whether S2-S1 and S1-event memories are integrated through a chaining process at the time of their retrieval (i.e., test presentations of S2 trigger retrieval of S1, and thereby, responses appropriate to the event); or "online" at the time of memory formation (i.e., in stage 2, S1 activates a representation of S2 such that both stimuli associate with the motivationally significant event). It finds that the type of integration is determined by the manner in which stimuli are presented in preconditioning as well as their familiarity. When the stimuli in preconditioning are presented repeatedly and/or serially (i.e., one after the other), the S2-S1 and S1-event memories are chained at the time of retrieval/testing. In contrast, when the stimuli in preconditioning are relatively novel and/or presented simultaneously, the S2-S1 and S1-event memories are integrated online. These statements are related to prior claims regarding the circumstances that promote different types of memory integration and, more generally, mechanisms of information processing in the mammalian brain.


Assuntos
Condicionamento Psicológico , Animais , Condicionamento Psicológico/fisiologia , Camundongos , Coelhos , Ratos
3.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180324

RESUMO

How does a stimulus never associated with danger become frightening? The present study addressed this question using a sensory preconditioning task with rats. In this task, rats integrate a sound-light memory formed in stage 1 with a light-danger memory formed in stage 2, as they show fear when tested with the sound in stage 3. Here we show that this integration occurs 'online' during stage 2: when activity in the region that consolidated the sound-light memory (perirhinal cortex) was inhibited during formation of the light-danger memory, rats no longer showed fear when tested with the sound but continued to fear the light. Thus, fear that accrues to a stimulus paired with danger simultaneously spreads to its past associates, thereby roping those associates into a fear memory network.


Assuntos
Medo/fisiologia , Memória/fisiologia , Córtex Somatossensorial/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Animais , Condicionamento Psicológico , Córtex Entorrinal/fisiologia , Medo/psicologia , Feminino , Reação de Congelamento Cataléptica/fisiologia , Masculino , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...