Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 11(1): 327, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396629

RESUMO

Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.

2.
ACS Nano ; 16(8): 12930-12940, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35849731

RESUMO

Short-wave infrared (SWIR; 850-1700 nm) upconversion fluorescence enables "autofluorescence-free" imaging with minimal tissue scattering, yet it is rarely explored due to the lack of strongly emissive SWIR upconversion fluorophores. In this work, we apply SWIR upconversion fluorescence for in vivo imaging with exceptional image contrast. Gold nanorods (AuNRs) are used to enhance the SWIR upconversion emission of small organic dyes, forming a AuNR-dye nanocomposite (NC). A maximal enhancement factor of ∼1320, contributed by both excitation and radiative decay rate enhancement, is achieved by varying the dye-to-AuNR ratio. In addition, the upconversion emission intensity of both free dyes and AuNR-dye NCs depends linearly on the excitation power, indicating that the upconversion emission mechanism remains unchanged upon enhancement, and it involves one-photon absorption. Moreover, the SWIR upconversion emission shows a significantly higher signal contrast than downconversion emission in the same emission window in a nonscattering medium. Finally, we apply the surface plasmon enhanced SWIR upconversion fluorescence for in vivo imaging of ovarian cancer, demonstrating high image contrast and low required dosage due to the suppressed autofluorescence.


Assuntos
Corantes Fluorescentes , Neoplasias Ovarianas , Humanos , Feminino , Fluorescência , Ouro , Diagnóstico por Imagem , Neoplasias Ovarianas/diagnóstico por imagem
3.
Opt Lett ; 47(11): 2830-2833, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648941

RESUMO

Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of (86±5)%.

4.
Phys Rev Lett ; 127(9): 093603, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506171

RESUMO

Franson interferometry is a well-known quantum measurement technique for probing photon-pair frequency correlations that is often used to certify time-energy entanglement. We demonstrate, for the first time, the complementary technique in the time basis called conjugate-Franson interferometry. It measures photon-pair arrival-time correlations, thus providing a valuable addition to the quantum toolbox. We obtain a conjugate-Franson interference visibility of 96±1% without background subtraction for entangled photon pairs generated by spontaneous parametric down-conversion. Our measured result surpasses the quantum-classical threshold by 25 standard deviations and validates the conjugate-Franson interferometer (CFI) as an alternative method for certifying time-energy entanglement. Moreover, the CFI visibility is a function of the biphoton's joint temporal intensity, and is therefore sensitive to that state's spectral phase variation: something that is not the case for Franson interferometry or Hong-Ou-Mandel interferometry. We highlight the CFI's utility by measuring its visibilities for two different biphoton states: one without and the other with spectral phase variation, observing a 21% reduction in the CFI visibility for the latter. The CFI is potentially useful for applications in areas of photonic entanglement, quantum communications, and quantum networking.

5.
Sci Rep ; 11(1): 300, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431956

RESUMO

Deterministic frequency manipulation of single photons is an essential tool for quantum communications and quantum networks. We demonstrate a 15.65 GHz frequency shift for classical and nonclassical light using a commercially available quadrature phase-shift keying modulator. The measured spectrum of frequency-shifted single photons indicates a high carrier-to-sideband ratio of 30 dB. We illustrate our frequency shifter's utility in quantum photonics by performing Hong-Ou-Mandel quantum interference between two photons whose initial frequency spectra overlap only partially, and showing visibility improvement from 62.7 to 89.1% after one of the photons undergoes a corrective frequency shift.

6.
Nat Commun ; 11(1): 5929, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230217

RESUMO

Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations-a plan view plus heights-and a 180∘ field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.

7.
Nano Lett ; 20(5): 3858-3863, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32271591

RESUMO

Time- and number-resolved photon detection is crucial for quantum information processing. Existing photon-number-resolving (PNR) detectors usually suffer from limited timing and dark-count performance or require complex fabrication and operation. Here, we demonstrate a PNR detector at telecommunication wavelengths based on a single superconducting nanowire with an integrated impedance-matching taper. The taper provides a kΩ load impedance to the nanowire, making the detector's output amplitude sensitive to the number of photon-induced hotspots. The prototyping device was able to resolve up to four absorbed photons with 16.1 ps timing jitter and <2 c.p.s. device dark count rate. Its exceptional distinction between single- and two-photon responses is ideal for high-fidelity coincidence counting and allowed us to directly observe bunching of photon pairs from a single output port of a Hong-Ou-Mandel interferometer. This detector architecture may provide a practical solution to applications that require high timing resolution and few-photon discrimination.

8.
Opt Express ; 27(13): 17539-17549, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252711

RESUMO

The manipulation of high-dimensional degrees of freedom provides new opportunities for more efficient quantum information processing. It has recently been shown that high-dimensional encoded states can provide significant advantages over binary quantum states in applications of quantum computation and quantum communication. In particular, high-dimensional quantum key distribution enables higher secret-key generation rates under practical limitations of detectors or light sources, as well as greater error tolerance. Here, we demonstrate high-dimensional quantum key distribution capabilities both in the laboratory and over a deployed fiber, using photons encoded in a high-dimensional alphabet to increase the secure information yield per detected photon. By adjusting the alphabet size, it is possible to mitigate the effects of receiver bottlenecks and optimize the secret-key rates for different channel losses. This work presents a strategy for achieving higher secret-key rates in receiver-limited scenarios and marks an important step toward high-dimensional quantum communication in deployed fiber networks.

9.
Opt Express ; 27(8): 11626-11634, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053005

RESUMO

We use pulsed spontaneous parametric down-conversion in KTiOPO 4, with a Gaussian phase-matching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows that these phase-matching and pump conditions are sufficient to ensure that a biphoton state with a circularly symmetric joint spectral intensity profile is transform limited and factorable. We verify the heralded-state spectral purity in a four-fold coincidence measurement by performing Hong-Ou-Mandel interference between two independently generated heralded photons. With a mild spectral filter we obtain an interference visibility of 98.4±1.1% which corresponds to a heralded-state purity of 99.2%. Our heralded photon source is potentially an essential resource for measurement-based quantum information processing and quantum network applications.

10.
Opt Express ; 26(8): 9945-9962, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715940

RESUMO

The ability to see around corners, i.e., recover details of a hidden scene from its reflections in the surrounding environment, is of considerable interest in a wide range of applications. However, the diffuse nature of light reflected from typical surfaces leads to mixing of spatial information in the collected light, precluding useful scene reconstruction. Here, we employ a computational imaging technique that opportunistically exploits the presence of occluding objects, which obstruct probe-light propagation in the hidden scene, to undo the mixing and greatly improve scene recovery. Importantly, our technique obviates the need for the ultrafast time-of-flight measurements employed by most previous approaches to hidden-scene imaging. Moreover, it does so in a photon-efficient manner (i.e., it only requires a small number of photon detections) based on an accurate forward model and a computational algorithm that, together, respect the physics of three-bounce light propagation and single-photon detection. Using our methodology, we demonstrate reconstruction of hidden-surface reflectivity patterns in a meter-scale environment from non-time-resolved measurements. Ultimately, our technique represents an instance of a rich and promising new imaging modality with important potential implications for imaging science.

11.
Opt Express ; 25(7): 7300-7312, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380854

RESUMO

Spectrally unentangled biphotons with high single-spatiotemporal-mode purity are highly desirable for many quantum information processing tasks. We generate biphotons with an inferred heralded-state spectral purity of 99%, the highest to date without any spectral filtering, by pulsed spontaneous parametric downconversion in a custom-fabricated periodically-poled KTiOPO4 crystal under extended Gaussian phase-matching conditions. To efficiently characterize the joint spectral intensity of the generated biphotons at high spectral resolution, we employ a commercially available dispersion compensation module (DCM) with a dispersion equivalent to 100 km of standard optical fiber and with an insertion loss of only 2.8 dB. Compared with the typical method of using two temperature-stabilized equal-length fibers that incurs an insertion loss of 20 dB per fiber, the DCM approach achieves high spectral resolution in a much shorter measurement time. Because the dispersion amount and center wavelengths of DCMs can be easily customized, spectral characterization in a wide range of quantum photonic applications should benefit significantly from this technique.

12.
Phys Rev Lett ; 118(12): 123601, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388184

RESUMO

We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1≤n≤5, after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.

13.
Nat Commun ; 7: 12046, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27338821

RESUMO

Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

14.
Opt Express ; 24(3): 1873-88, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906766

RESUMO

We present an imaging framework that is able to accurately reconstruct multiple depths at individual pixels from single-photon observations. Our active imaging method models the single-photon detection statistics from multiple reflectors within a pixel, and it also exploits the fact that a multi-depth profile at each pixel can be expressed as a sparse signal. We interpret the multi-depth reconstruction problem as a sparse deconvolution problem using single-photon observations, create a convex problem through discretization and relaxation, and use a modified iterative shrinkage-thresholding algorithm to efficiently solve for the optimal multi-depth solution. We experimentally demonstrate that the proposed framework is able to accurately reconstruct the depth features of an object that is behind a partially-reflecting scatterer and 4 m away from the imager with root mean-square error of 11 cm, using only 19 signal photon detections per pixel in the presence of moderate background light. In terms of root mean-square error, this is a factor of 4.2 improvement over the conventional method of Gaussian-mixture fitting for multi-depth recovery.

15.
Sci Rep ; 5: 10329, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26015093

RESUMO

Barreto Lemos et al. [Nature 512, 409-412 (2014)] reported an experiment in which a non-degenerate parametric downconverter and a non-degenerate optical parametric amplifier--used as a wavelength-converting phase conjugator--were employed to image object transparencies in a manner akin to ghost imaging. Their experiment, however, relied on single-photon detection, rather than the photon-coincidence measurements employed in ghost imaging with a parametric downconverter source. More importantly, their system formed images despite the photons that passed through the object never being detected. Barreto Lemos et al. interpreted their experiment as a quantum imager, as assuredly it is, owing to its downconverter's emitting entangled signal and idler beams. We show, however, that virtually all the features of their setup can be realized in a quantum-mimetic fashion using classical-state light, specifically a pair of bright pseudothermal beams possessing a phase-sensitive cross correlation. Owing to its much higher signal-to-noise ratio, our bright-source classical imager could greatly reduce image-acquisition time compared to that of Barreto Lemos et al.'s quantum system, while retaining the latter's ability to image with undetected photons.

16.
Phys Rev Lett ; 114(11): 110506, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839252

RESUMO

Nonclassical states are essential for optics-based quantum information processing, but their fragility limits their utility for practical scenarios in which loss and noise inevitably degrade, if not destroy, nonclassicality. Exploiting nonclassical states in quantum metrology yields sensitivity advantages over all classical schemes delivering the same energy per measurement interval to the sample being probed. These enhancements, almost without exception, are severely diminished by quantum decoherence. Here, we experimentally demonstrate an entanglement-enhanced sensing system that is resilient to quantum decoherence. We employ entanglement to realize a 20% signal-to-noise ratio improvement over the optimum classical scheme in an entanglement-breaking environment plagued by 14 dB of loss and a noise background 75 dB stronger than the returned probe light. Our result suggests that advantageous quantum-sensing technology could be developed for practical situations.

17.
Phys Rev Lett ; 112(12): 120506, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724641

RESUMO

High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.

18.
Science ; 343(6166): 58-61, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24292628

RESUMO

Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Fótons , Humanos
19.
Phys Rev Lett ; 111(1): 010501, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23862986

RESUMO

Entanglement is essential to many quantum information applications, but it is easily destroyed by quantum decoherence arising from interaction with the environment. We report the first experimental demonstration of an entanglement-based protocol that is resilient to loss and noise which destroy entanglement. Specifically, despite channel noise 8.3 dB beyond the threshold for entanglement breaking, eavesdropping-immune communication is achieved between Alice and Bob when an entangled source is used, but no such immunity is obtainable when their source is classical. The results prove that entanglement can be utilized beneficially in lossy and noisy situations, i.e., in practical scenarios.

20.
Sci Rep ; 3: 1849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673426

RESUMO

Ragy and Adesso argue that quantum discord is involved in the formation of a pseudothermal ghost image. We show that quantum discord plays no role in spatial light modulator ghost imaging, i.e., ghost-image formation based on structured illumination realized with laser light that has undergone spatial light modulation by the output from a pseudorandom number generator. Our analysis thus casts doubt on the degree to which quantum discord is necessary for ghost imaging.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador , Lasers , Iluminação/métodos , Teoria Quântica , Simulação por Computador , Aumento da Imagem , Iluminação/instrumentação , Espalhamento de Radiação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...