Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Genet Dev ; 87: 102211, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838495

RESUMO

N6-methyladenosine (m6A) is the most abundant modification to mRNAs. Loss-of-function studies of main m6A regulators have indicated the role of m6A in pre-mRNA splicing. Recent studies have reported the role of splicing in preventing m6A deposition. Understanding the interplay between m6A and mRNA splicing holds the potential to clarify the significance of these fundamental molecular mechanisms in cell development and function, thereby shedding light on their involvement in the pathogenesis of myriad diseases.

2.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780787

RESUMO

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Diferenciação Celular/genética , Humanos , Monócitos/metabolismo , Monócitos/citologia , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polaridade Celular/genética , RNA/genética , RNA/metabolismo , Adenosina/metabolismo
3.
Cancer Med ; 13(7): e6989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545841

RESUMO

The N6-methyladenosine (m6A) RNA modification has gained significant prominence as a new layer of regulatory mechanism that governs gene expression. Over the past decade, various m6A regulators responsible for introducing, eliminating, and recognising RNA methylation have been identified. Notably, these m6A regulators often exhibit altered expression patterns in cancer, occasionally offering prognostic value. Nonetheless, the complex roles of these regulators in human cancer pathology remain enigmatic, with conflicting outcomes reported in different studies.In recent years, a multitude of inhibitors and activators targeting m6A regulators have been reported. Several of these compounds have demonstrated promising efficacy in both in vitro and in vivo cancer models. These findings collectively underscore the dynamic landscape of m6A regulation in cancer biology, revealing its potential as a therapeutic target and prognostic indicator.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/uso terapêutico , Metilação de RNA , RNA/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Sci Data ; 11(1): 252, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418823

RESUMO

RNA modifications have emerged as central regulators of gene expression programs. Amongst RNA modifications are N6-methyladenosine (m6A) and RNA 5-hydroxymethylcytosine (5hmC). While m6A is established as a versatile regulator of RNA metabolism, the functions of RNA 5hmC are unclear. Despite some evidence linking RNA modifications to immunity, their implications in gene expression control in macrophage development and functions remain unclear. Here we present a multi-omics dataset capturing different layers of the gene expression programs driving macrophage differentiation and polarisation. We obtained mRNA-Seq, m6A-IP-Seq, 5hmC-IP-Seq, Polyribo-Seq and LC-MS/MS data from monocytes and resting-, pro- and anti-inflammatory-like macrophages. We present technical validation showing high quality and correlation between samples for all datasets, and evidence of biological consistency of modelled macrophages at the transcriptomic, epitranscriptomic, translational and proteomic levels. This multi-omics dataset provides a resource for the study of RNA m6A and 5hmC in the context of macrophage biology and spans the gene expression process from transcripts to proteins.


Assuntos
Macrófagos , Multiômica , RNA , Humanos , Cromatografia Líquida , Macrófagos/citologia , RNA/metabolismo , Espectrometria de Massas em Tandem , Diferenciação Celular , Polaridade Celular
5.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307625

RESUMO

Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.


Assuntos
Quimiocina CXCL12 , MicroRNAs , Infecções por Mycobacterium não Tuberculosas , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas de Peixe-Zebra , Animais , Granuloma/genética , Macrófagos , MicroRNAs/genética , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Quimiocina CXCL12/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Sci Adv ; 10(4): eadh3409, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277448

RESUMO

The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.


Assuntos
Neoplasias , Transdução de Sinais , Animais , Humanos , Camundongos , Proliferação de Células , DNA , Sistema de Sinalização das MAP Quinases , Neoplasias/genética
7.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38152981

RESUMO

Alternative splicing (AS) is a crucial mechanism for regulating gene expression and isoform diversity in eukaryotes. However, the analysis and visualization of AS events from RNA sequencing data remains challenging. Most tools require a certain level of computer literacy and the available means of visualizing AS events, such as coverage and sashimi plots, have limitations and can be misleading. To address these issues, we present SpliceWiz, an R package with an interactive Shiny interface that allows easy and efficient AS analysis and visualization at scale. A novel normalization algorithm is implemented to aggregate splicing levels within sample groups, thereby allowing group differences in splicing levels to be accurately visualized. The tool also offers downstream gene ontology enrichment analysis, highlighting ASEs belonging to functional pathways of interest. SpliceWiz is optimized for speed and efficiency and introduces a new file format for coverage data storage that is more efficient than BigWig. Alignment files are processed orders of magnitude faster than other R-based AS analysis tools and on par with command-line tools. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization. SpliceWiz is a Bioconductor package and is also available on GitHub (https://github.com/alexchwong/SpliceWiz).


Assuntos
Processamento Alternativo , Software , Splicing de RNA , Análise de Sequência de RNA , Algoritmos
9.
FASEB J ; 37(7): e23009, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37273180

RESUMO

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Assuntos
Neoplasias do Colo , Ácido Linoleico , Humanos , Camundongos , Animais , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Eicosanoides , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Neoplasias do Colo/etiologia
10.
Cell Mol Life Sci ; 80(6): 157, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208522

RESUMO

Virilizer-like m6A methyltransferase-associated protein (VIRMA) maintains the stability of the m6A writer complex. Although VIRMA is critical for RNA m6A deposition, the impact of aberrant VIRMA expression in human diseases remains unclear. We show that VIRMA is amplified and overexpressed in 15-20% of breast cancers. Of the two known VIRMA isoforms, the nuclear-enriched full-length but not the cytoplasmic-localised N-terminal VIRMA promotes m6A-dependent breast tumourigenesis in vitro and in vivo. Mechanistically, we reveal that VIRMA overexpression upregulates the m6A-modified long non-coding RNA, NEAT1, which contributes to breast cancer cell growth. We also show that VIRMA overexpression enriches m6A on transcripts that regulate the unfolded protein response (UPR) pathway but does not promote their translation to activate the UPR under optimal growth conditions. Under stressful conditions that are often present in tumour microenvironments, VIRMA-overexpressing cells display enhanced UPR and increased susceptibility to death. Our study identifies oncogenic VIRMA overexpression as a vulnerability that may be exploited for cancer therapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resposta a Proteínas não Dobradas/genética , RNA/metabolismo , Interferência de RNA , Microambiente Tumoral
11.
Gynecol Oncol ; 171: 129-140, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893489

RESUMO

OBJECTIVE: Universal screening of endometrial carcinoma (EC) for mismatch repair deficiency (MMRd) and Lynch syndrome uses presence of MLH1 methylation to omit common sporadic cases from follow-up germline testing. However, this overlooks rare cases with high-risk constitutional MLH1 methylation (epimutation), a poorly-recognized mechanism that predisposes to Lynch-type cancers with MLH1 methylation. We aimed to determine the role and frequency of constitutional MLH1 methylation among EC cases with MMRd, MLH1-methylated tumors. METHODS: We screened blood for constitutional MLH1 methylation using pyrosequencing and real-time methylation-specific PCR in patients with MMRd, MLH1-methylated EC ascertained from (i) cancer clinics (n = 4, <60 years), and (ii) two population-based cohorts; "Columbus-area" (n = 68, all ages) and "Ohio Colorectal Cancer Prevention Initiative (OCCPI)" (n = 24, <60 years). RESULTS: Constitutional MLH1 methylation was identified in three out of four patients diagnosed between 36 and 59 years from cancer clinics. Two had mono-/hemiallelic epimutation (∼50% alleles methylated). One with multiple primaries had low-level mosaicism in normal tissues and somatic "second-hits" affecting the unmethylated allele in all tumors, demonstrating causation. In the population-based cohorts, all 68 cases from the Columbus-area cohort were negative and low-level mosaic constitutional MLH1 methylation was identified in one patient aged 36 years out of 24 from the OCCPI cohort, representing one of six (∼17%) patients <50 years and one of 45 patients (∼2%) <60 years in the combined cohorts. EC was the first/dual-first cancer in three patients with underlying constitutional MLH1 methylation. CONCLUSIONS: A correct diagnosis at first presentation of cancer is important as it will significantly alter clinical management. Screening for constitutional MLH1 methylation is warranted in patients with early-onset EC or synchronous/metachronous tumors (any age) displaying MLH1 methylation.


Assuntos
Neoplasias Colorretais , Neoplasias do Endométrio , Humanos , Feminino , Pessoa de Meia-Idade , Metilação de DNA , Linhagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Colorretais/genética , Neoplasias do Endométrio/genética , Proteína 1 Homóloga a MutL/genética , Reparo de Erro de Pareamento de DNA
12.
Aging Cell ; 22(1): e13755, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495001

RESUMO

The aged brain is associated with an inevitable decline in cognitive function and increased vulnerability to neurodegenerative disorders. Multiple molecular hallmarks have been associated with the aging nervous system through transcriptomics and proteomic studies. Recently, epitranscriptomic analysis has highlighted the role of RNA chemical modification in various biological processes. In particular, N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNAs, has been functionally linked to multiple aspects of RNA metabolism with the roles of m6A in processes such as learning and memory, leading to our current investigation of how the m6A-transcriptomic landscape is shaped during aging. Using the inbred C57BL/6 line, we compared the m6A-transcriptomic profiles from the hippocampi of young (3-month-old) and aged (20-month-old) mice. Methylated RNA immunoprecipitation (MeRIP)-sequencing analysis revealed hyper- and hypomethylation in 426 and 102 genes, respectively, in the aged hippocampus (fold change >1.5, false discovery rate <0.05). By correlating the methylation changes to their steady-state transcript levels in the RNA-Seq data, we found a significant concordance between m6A and transcript levels in both directions. Notably, the myelin regulator gene Gpr17 was downregulated in the aged hippocampus concomitant with reduced m6A levels in its 3'UTR. Using reporter constructs and mutagenesis analysis, we demonstrated that the putative m6A sites in the 3'UTR of Gpr17 are important for mRNA translation but not for regulating transcript stability. Overall, the positive correlation between m6A and the transcript expression levels indicates a co-transcriptional regulation of m6A with gene expression changes that occur in the aged mouse hippocampus.


Assuntos
Proteômica , RNA , Camundongos , Animais , RNA/genética , Regiões 3' não Traduzidas , Camundongos Endogâmicos C57BL , Metilação de DNA , Hipocampo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética
13.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35545295

RESUMO

Pathogenic mycobacteria inhibit inflammasome activation to establish infection. Although it is known that potassium efflux is a trigger for inflammasome activation, the interaction between mycobacterial infection, potassium efflux, and inflammasome activation has not been investigated. Here, we use Mycobacterium marinum infection of zebrafish embryos and Mycobacterium tuberculosis infection of THP-1 cells to demonstrate that pathogenic mycobacteria up-regulate the host WNK signalling pathway kinases SPAK and OXSR1 which control intracellular potassium balance. We show that genetic depletion or inhibition of OXSR1 decreases bacterial burden and intracellular potassium levels. The protective effects of OXSR1 depletion are at least partially mediated by NLRP3 inflammasome activation, caspase-mediated release of IL-1ß, and downstream activation of protective TNF-α. The elucidation of this druggable pathway to potentiate inflammasome activation provides a new avenue for the development of host-directed therapies against intracellular infections.


Assuntos
Inflamassomos , Mycobacterium , Animais , Inflamassomos/metabolismo , Mycobacterium/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Transdução de Sinais , Peixe-Zebra
14.
Trends Genet ; 38(8): 789-792, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35466008

RESUMO

Recent landmark discoveries have underpinned the physiological importance of intron retention (IR) across multiple domains of life and revealed an unexpected breath of functions in a large variety of biological processes. Despite significant progress in the field, some challenges remain. Once solved, opportunities will arise for discovering more functions of IR.


Assuntos
Processamento Alternativo , Fenômenos Biológicos , Íntrons/genética
15.
Semin Cell Dev Biol ; 125: 110-121, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34053866

RESUMO

Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N6-methyladenosine (m6A) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned m6A as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of m6A signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed m6A signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.


Assuntos
Aprendizagem , Plasticidade Neuronal , Encéfalo/fisiologia , Humanos , Plasticidade Neuronal/genética , Neurônios/metabolismo , RNA/metabolismo
16.
Trends Genet ; 38(4): 325-332, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34920906

RESUMO

N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.


Assuntos
Adenosina , Núcleo Celular , Transporte Ativo do Núcleo Celular/genética , Adenosina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34156031

RESUMO

PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Aquaporina 2/metabolismo , Rim , Água/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Aquaporina 2/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/metabolismo , Rim/fisiologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
19.
RNA Biol ; 18(1): 93-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816606

RESUMO

CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.


Assuntos
Processamento Alternativo , Fator de Ligação a CCCTC/genética , Regulação da Expressão Gênica , Haploinsuficiência , Íntrons , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Genótipo , Camundongos , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos , Ligação Proteica , Transcriptoma
20.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322625

RESUMO

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...