Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 5982014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388169

RESUMO

Dysregulation of osteoclast-osteoblast balance, resulting in abnormal bone remodeling, is responsible for postmenopausal osteoporosis (PMOP) or other secondary forms of osteoporosis. We demonstrated that dictamnine (DIC), a novel RANKL-targeted furoquinoline alkaloid, inhibits osteoclastogenesis by facilitating the activities of reactive oxygen species (ROS), NF-κB, and NFATc1 in vitro and prevents the development of OVX-induced osteoporosis mouse models in vivo. Methods. The docking mechanism of DIC and RANKL was initially identified by protein-ligand molecular docking. RNA sequencing was performed and analyzed to reveal the potential mechanism and signaling pathway of the antiosteoporosis effects of DIC. To verify the sequencing results, we examined the impact of DIC on RANKL-induced osteoclast differentiation, bone resorption, F-actin ring production, ROS generation, and NF-κB activation in osteoclasts in vitro. Moreover, a luciferase assay was performed to determine the binding and transcriptional activity of Nrf2 and NF-κB. The in vivo efficacy of DIC was assessed with an ovariectomy- (OVX-) induced osteoporosis model, which was analyzed using micro-CT and bone histomorphometry. Results. The molecular docking results indicated that DIC could bind particularly to RANKL. RNA-seq confirmed that DIC could regulate the osteoclast-related pathway. DIC suppressed osteoclastogenesis, bone resorption, F-actin belt formation, osteoclast-specific gene expression, and ROS activity by preventing NFATc1 expression and affecting NF-κB signaling pathways in vitro. The luciferase assay showed that DIC not only suppressed the activity of Nrf2 but also contributed to the combination of Nrf2 and NF-κB. Our in vivo study indicated that DIC protects against OVX-induced osteoporosis and preserves bone volume by inhibiting osteoclast activity and function. Conclusions. DIC can ameliorate osteoclast formation and OVX-induced osteoporosis and therefore is a potential therapeutic treatment for osteoporosis.


Assuntos
Alcaloides , Reabsorção Óssea , Osteoporose , Camundongos , Humanos , Animais , Feminino , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Actinas/metabolismo , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Transdução de Sinais , Alcaloides/farmacologia
2.
J Cell Mol Med ; 26(13): 3591-3597, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633138

RESUMO

Osteoporosis is a bone disease that is caused by disorder of the skeletal microenvironment, and it characterized by a high disability rate and the occurrence of low energy fractures. Studies on osteoporosis and related treatment options have always been hot spots in the field of bone biology. In the past, the understanding of osteoporosis has been rather limited; research has only shown that osteoporosis involves the imbalance of bone resorption and bone formation, and recent studies have not provided cutting-edge theories of the basic understanding of osteoporosis. Recent studies have shown crosstalk between bone and immune responses. RANKL, an essential factor for osteoclasts (OCs), is associated with the immune system. T helper (Th17)/regulatory T (Treg) cells are two different kinds of T cells that can self-interact and regulate the differentiation and formation of OCs. Therefore, understanding the correlation between the skeletal and immune systems and further revealing the roles and the cooperation between RANKL and the Th17/Treg balance will help to provide new insights for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Osteoclastos , Ligante RANK , Linfócitos T Reguladores , Células Th17
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...