Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-22919615

RESUMO

Haemophilus influenzae is a Gram-negative bacterium that has no identified natural niche outside of the human host. It primarily colonizes the nasopharyngeal mucosa in an asymptomatic mode, but has the ability to disseminate to other anatomical sites to cause otitis media, upper, and lower respiratory tract infections, septicemia, and meningitis. To persist in diverse environments the bacterium must exploit and utilize the nutrients and other resources available in these sites for optimal growth/survival. Recent evidence suggests that regulatory factors that direct such adaptations also control virulence determinants required to resist and evade immune clearance mechanisms. In this review, we describe the recent application of whole-genome approaches that together provide insight into distinct survival mechanisms of H. influenzae in the context of different sites of pathogenesis.


Assuntos
Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Fatores de Virulência/genética , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Haemophilus influenzae/genética , Humanos , Redes e Vias Metabólicas/genética
2.
Infect Immun ; 79(5): 1971-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357723

RESUMO

Signaling mechanisms used by Haemophilus influenzae to adapt to conditions it encounters during stages of infection and pathogenesis are not well understood. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and contributes to resistance to bactericidal effects of serum and to bloodstream infection by H. influenzae. We show that ArcA of nontypeable H. influenzae (NTHI) activates expression of a glycosyltransferase gene, lic2B. Structural comparison of the lipooligosaccharide (LOS) of a lic2B mutant to that of the wild-type strain NT127 revealed that lic2B is required for addition of a galactose residue to the LOS outer core. The lic2B gene was crucial for optimal survival of NTHI in a mouse model of bacteremia and for evasion of serum complement. The results demonstrate that ArcA, which controls cellular metabolism in response to environmental reduction and oxidation (redox) conditions, also coordinately controls genes that are critical for immune evasion, providing evidence that NTHI integrates redox signals to regulate specific countermeasures against host defense.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas do Sistema Complemento/imunologia , Infecções por Haemophilus/imunologia , Haemophilus influenzae/patogenicidade , Evasão da Resposta Imune/genética , Animais , Proteínas de Bactérias/genética , Western Blotting , Separação Celular , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/genética , Haemophilus influenzae/imunologia , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Camundongos , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
3.
Methods Mol Biol ; 733: 209-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431773

RESUMO

Whole-genome techniques toward identification of microbial genes required for their survival and growth during infection have been useful for studies of bacterial pathogenesis. The advent of massively parallel sequencing platforms has created the opportunity to markedly accelerate such genome-scale analyses and achieve unprecedented sensitivity, resolution, and quantification. This chapter provides an overview of a genome-scale methodology that combines high-density transposon mutagenesis with a mariner transposon and deep sequencing to identify genes that are needed for survival in experimental models of pathogenesis. Application of this approach to a model pathogen, Haemophilus influenzae, has provided a comprehensive analysis of the relative role of each gene of this human respiratory pathogen in a murine pulmonary model. The method is readily adaptable to nearly any organism amenable to transposon mutagenesis.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional/genética , Análise de Sequência de DNA/métodos , Animais , Biotina/metabolismo , Biotinilação , Cromossomos Bacterianos/genética , Primers do DNA/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Genoma Bacteriano/genética , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Poliadenilação , Reprodutibilidade dos Testes
4.
Proc Natl Acad Sci U S A ; 106(38): 16422-7, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805314

RESUMO

Rapid genome-wide identification of genes required for infection would expedite studies of bacterial pathogens. We developed genome-scale "negative selection" technology that combines high-density transposon mutagenesis and massively parallel sequencing of transposon/chromosome junctions in a mutant library to identify mutants lost from the library after exposure to a selective condition of interest. This approach was applied to comprehensively identify Haemophilus influenzae genes required to delay bacterial clearance in a murine pulmonary model. Mutations in 136 genes resulted in defects in vivo, and quantitative estimates of fitness generated by this technique were in agreement with independent validation experiments using individual mutant strains. Genes required in the lung included those with characterized functions in other models of H. influenzae pathogenesis and genes not previously implicated in infection. Genes implicated in vivo have reported or potential roles in survival during nutrient limitation, oxidative stress, and exposure to antimicrobial membrane perturbations, suggesting that these conditions are encountered by H. influenzae during pulmonary infection. The results demonstrate an efficient means to identify genes required for bacterial survival in experimental models of pathogenesis, and this approach should function similarly well in selections conducted in vitro and in vivo with any organism amenable to insertional mutagenesis.


Assuntos
Genes Bacterianos/genética , Genoma Bacteriano/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Pulmão/microbiologia , Animais , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , Estudo de Associação Genômica Ampla , Biblioteca Genômica , Haemophilus influenzae/crescimento & desenvolvimento , Camundongos , Mutagênese Insercional/métodos , Mutação
5.
Infect Immun ; 77(5): 1945-58, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289513

RESUMO

Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels. Formate-dependent nitrite reductase regulator (FNR) is an oxygen-sensitive regulator in several bacterial pathogens. We report that fnr of H. influenzae is required for anaerobic defense against exposure to NO donors and to resist NO-dependent effects of gamma interferon (IFN-gamma)-activated murine bone marrow-derived macrophages. To understand the mechanism of resistance, we investigated the role of FNR-regulated genes in defense against NO sources. Expression analysis revealed FNR-dependent activation of nrfA, dmsA, napA, and ytfE. Nonpolar deletion mutants of nrfA and ytfE exhibited sensitivity to NO donors, and the ytfE gene was more critical for survival. Compared to the wild-type strain, the ytfE mutant exhibited decreased survival when exposed to macrophages, a defect that was more pronounced after prior stimulation of macrophages with IFN-gamma or lipopolysaccharide. Complementation restored survival of the mutant to the level in the parental strain. Increased sensitivity of the ytfE mutant relative to that of the parent was abrogated by treatment of macrophages with a NO synthase inhibitor, implicating YtfE in resistance to a NO-dependent pathway. These results identify a requirement for FNR in positive control of ytfE and indicate a critical role for ytfE in resistance of H. influenzae to reactive nitrogen species and the antibacterial effects of macrophages.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação da Expressão Gênica , Haemophilus influenzae/fisiologia , Macrófagos/microbiologia , Óxido Nítrico/toxicidade , Fatores de Transcrição/fisiologia , Animais , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Haemophilus influenzae/imunologia , Humanos , Camundongos , Viabilidade Microbiana , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/fisiologia
6.
Methods Mol Biol ; 416: 27-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18392959

RESUMO

The human respiratory pathogen Haemophilus influenzae, a Gram-negative bacterium, is the first free-living organism to have its complete genome sequenced, providing the opportunity to apply genomic-scale approaches to study gene function. This chapter provides an overview of a highly efficient, in vitro mariner transposon-based method that exploits the natural transformation feature of this organism for the identification of essential genes. In addition, we describe strategies for conditional expression systems that would facilitate further analysis of this class of genes. Finally, we outline a method based on the approach used in H. influenzae for identifying essential genes that can be applied to other bacteria that are not naturally transformable.


Assuntos
Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Haemophilus influenzae/genética , Elementos de DNA Transponíveis , DNA Bacteriano/análise , Proteínas de Ligação a DNA , Haemophilus influenzae/crescimento & desenvolvimento , Mutagênese Insercional , Transposases
7.
Infect Immun ; 76(4): 1498-508, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18212083

RESUMO

Haemophilus influenzae is an obligate human pathogen that persistently colonizes the nasopharynx and causes disease when it invades the bloodstream, lungs, or middle ear. Proteins that mediate critical interactions with the host during invasive disease are likely to be secreted. Many secreted proteins require addition of disulfide bonds by the DsbA disulfide oxidoreductase for activity or stability. In this study, we evaluated the role in H. influenzae pathogenesis of DsbA, as well as HbpA, a substrate of DsbA. Mutants of H. influenzae Rd and type b strain Eagan having nonpolar deletions of dsbA were attenuated for bacteremia in animal models, and complemented strains exhibited virulence equivalent to that of the parental strains. Comparison of predicted secreted proteins in H. influenzae to known DsbA substrates in other species revealed several proteins that could contribute to the role of dsbA in virulence. One candidate, the heme transport protein, HbpA, was examined because of the importance of exogenous heme for aerobic growth of H. influenzae. The presence of a dsbA-dependent disulfide bond in HbpA was verified by an alkylation protection assay, and HbpA was less abundant in a dsbA mutant. The hbpA mutant exhibited reduced bacteremia in the mouse model, and complementation restored its in vivo phenotype to that of the parental strain. These results indicate that dsbA is required in vivo and that HbpA and additional DsbA-dependent factors are likely to participate in H. influenzae pathogenesis.


Assuntos
Haemophilus influenzae/enzimologia , Haemophilus influenzae/patogenicidade , Periplasma/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Deleção de Genes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Haemophilus influenzae/crescimento & desenvolvimento , Heme/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isomerases de Dissulfetos de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Virulência
8.
Mol Microbiol ; 64(5): 1375-90, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542927

RESUMO

Haemophilus influenzae transits between niches within the human host that are predicted to differ in oxygen levels. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and has been implicated in bacterial pathogenesis, yet the mechanism is not understood. We undertook a genome-scale study to identify genes of the H. influenzae ArcA regulon. Deletion of arcA resulted in increased anaerobic expression of genes of the respiratory chain and of H. influenzae's partial tricarboxylic acid cycle, and decreased anaerobic expression levels of genes of polyamine metabolism, and iron sequestration. Deletion of arcA also conferred a susceptibility to transient exposure to hydrogen peroxide that was greater following anaerobic growth than after aerobic growth. Array data revealed that the dps gene, not previously assigned to the ArcA modulon in bacteria, exhibited decreased expression in the arcA mutant. Deletion of dps resulted in hydrogen peroxide sensitivity and complementation restored resistance, providing insight into the previously uncharacterized mechanism of arcA-mediated H(2)O(2) resistance. The results indicate a role for H. influenzae arcA and dps in pre-emptive defence against transitions from growth in low oxygen environments to aerobic exposure to hydrogen peroxide, an antibacterial oxidant produced by phagocytes during infection.


Assuntos
Haemophilus influenzae/genética , Estresse Oxidativo/genética , Regulon , Deleção de Genes , Perfilação da Expressão Gênica , Haemophilus influenzae/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...