Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(12): A454-A466, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788826

RESUMO

High energy photons can affect the dielectric response of AC powder electroluminescent devices (ACPELDs). In this paper, electroluminescent (EL), phosphor and dielectric films are photo-excited at peak wavelengths of 399 nm, 520 nm and 625 nm to identify the dielectric relaxation processes occurring in ACPELDs. The 399 nm illumination changes the frequency-dependent dielectric responses of both EL and phosphor films due to the photo-induced excitation of ZnS:Cu,Al phosphor particles. A higher illumination intensity increases the dipolar polarization in the resin matrix and enhances the Maxwell-Wagner-Sillars (MWS) effect at the particle/resin interfaces. Equivalent circuits relating to the relaxation processes present in the EL and phosphor films are derived. From the analyses of the circuit component values, a charge generation and accumulation process is proposed to explain these opto-impedance behaviors.

2.
Sci Rep ; 7(1): 1350, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465553

RESUMO

We have investigated the impact of Cu2ZnSnS4-Molybdenum (Mo) interface quality on the performance of sputter-grown Cu2ZnSnS4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoSx) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoSx layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoSx layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...