Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 325: 103094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359673

RESUMO

Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Polímeros , Polietilenoglicóis , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Microambiente Tumoral
2.
Phytomedicine ; 123: 155229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006804

RESUMO

BACKGROUND: Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known. PURPOSE: The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation. METHODS: TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles. RESULTS: The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1ß, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion. CONCLUSION: TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Extratos Vegetais , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Medicina Tradicional Tibetana , Fígado , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , China , Camundongos Endogâmicos C57BL
3.
Asian J Pharm Sci ; 18(5): 100848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37881796

RESUMO

Virus-capsid mimicking mucus-permeable nanoparticles are promising oral insulin carriers which surmount intestinal mucus barrier. However, the impact of different virus-capsid mimicking structure remains unexplored. In this study, utilizing biotin grafted chitosan as the main skeleton, virus-mimicking nanoparticles endowed with biologic-shell (streptavidin coverage) and polymeric-shell (hyaluronic acid/alginate coating) were designed with insulin as a model drug by self-assembly processes. It was demonstrated that biologic-shell mimicking nanoparticles exhibited a higher intestinal trans-mucus (>80%, 10 min) and transmucosal penetration efficiency (1.6-2.2-fold improvement) than polymeric-shell counterparts. Uptake mechanism studies revealed caveolae-mediated endocytosis was responsible for the absorption of biologic-shell mimicking nanoparticles whereas polymeric-shell mimicking nanoparticles were characterized by clathrin-mediated pathway with anticipated lysosomal insulin digestion. Further, in vivo hypoglycemic study indicated that the improved effect of regulating blood sugar levels was virus-capsid structure dependent out of which biologic-shell mimicking nanoparticles presented the best performance (5.1%). Although the findings of this study are encouraging, much more work is required to meet the standards of clinical translation. Taken together, we highlight the external structural dependence of virus-capsid mimicking nanoparticles on the muco-penetrating and uptake mechanism of enterocytes that in turn affecting their in vivo absorption, which should be pondered when engineering virus-mimicking nanoparticles for oral insulin delivery.

4.
Int J Biol Macromol ; 253(Pt 4): 126991, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739286

RESUMO

Solid particles ≤5 µm are essential to allow lower lung deposition and macrophage phagocytosis of anti-tubercular drugs. Decorating liquid nanoemulsion of anti-tubercular drug with macrophage-specific chitosan and chitosan-folate conjugate and spray drying the nanoemulsion with lactose produced oversized solid particles due to polysaccharide binding effects. This study designed solid nanoemulsion using lactose as the primary solid carrier and explored additives and spray-drying variables to reduce the binding and particle growth effects of chitosan. Deposition of magnesium stearate on lactose negated chitosan-inducible excessive lactose-liquid nanoemulsion binding and solid particle growth. Moderating the adhesion of chitosan-decorated liquid nanoemulsion onto lactose produced smooth-surface solid microparticles (size: 5.45 ± 0.26 µm; roughness: ∼80 nm) with heterogeneous size (span: 1.87 ± 1.21) through plasticization of constituent materials of nanoemulsion and lactose involving OH/N-H, C-H, CONH and/or COO moieties. Smaller solid particles could attach onto the larger particles with minimal steric hindrance by smooth surfaces. Together with round solid particulate structures (circularity: 0.919 ± 0.002), good pulmonary inhalation beneficial for treatment of pulmonary tuberculosis as well as other diseases is conferred.


Assuntos
Quitosana , Quitosana/química , Lactose/química , Portadores de Fármacos/química , Pulmão/metabolismo , Administração por Inalação , Tamanho da Partícula , Pós/metabolismo
5.
Biotechnol Adv ; 67: 108200, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331671

RESUMO

Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Neoplasias/metabolismo , Nanopartículas/uso terapêutico , Microambiente Tumoral
6.
Asian J Pharm Sci ; 18(2): 100794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37035131

RESUMO

Nanoscale medicine confers passive and active targeting potential. The development of nanomedicine is however met with processing, handling and administration hurdles. Excessive solid nanoparticle aggregation and caking result in low product yield, poor particle flowability and inefficient drug administration. These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques. Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry, surface composition or chemistry being altered and negating biological performance. This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles. The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development, and their interplay effects with process temperature, physical forces and environmental stresses. To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction, modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.

7.
Int J Biol Macromol ; 241: 124506, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085071

RESUMO

Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Amilose/química , Sistemas de Liberação de Medicamentos , Solubilidade
8.
Int J Biol Macromol ; 226: 321-335, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36502951

RESUMO

The anti-hyperpigmentation effect and tyrosinase inhibitory mechanism of cinnamon polysaccharides have not been reported. The current study focused on the extraction of polysaccharides from Cinnamomum cassia bark using microwave-assisted approach and optimization of the extraction process (i.e., microwave power, irradiation time and buffer-to-sample ratio) by Box-Behnken design to obtain a high yield of polysaccharides with high sun protection factor (SPF), anti-hyperpigmentation and antioxidant activities. The extracted pectic-polysaccharides had low molecular weight and degree of esterification. The optimal extraction process had polysaccharides characterized by (a) monophenolase inhibitory activity = 97.5 %; (b) diphenolase inhibitory activity = 99.4 %; (c) ferric reducing antioxidant power = 4.4 mM; (d) SPF = 6.1; (e) yield = 13.7 %. The SPF, tyrosinase inhibitory and antioxidant activities were primarily contributed by the polysaccharides. In conclusion, the polysaccharides from C. cassia could be an alternative therapeutic source for skin hyperpigmentation treatment.


Assuntos
Antioxidantes , Cinnamomum aromaticum , Antioxidantes/farmacologia , Micro-Ondas , Monofenol Mono-Oxigenase , Polissacarídeos/farmacologia
9.
Int J Pharm ; 628: 122226, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36191818

RESUMO

Dome matrix was designed with gastric and intestinal targeting capacities using melatonin and caffeine as model drugs, and alginate, chitosan and cellulose as composite materials. The melatonin, caffeine and intermediate hydroxypropylmethylcelluose-based dispersible modules were prepared through compaction. Caffeine piled module was capped at both ends with melatonin void modules via intermediate dispersible modules into Dome matrix. Dispersion of intermediate module detached melatonin module from Dome matrix and had it floated in stomach providing a more complete melatonin release due to favorable pH-pKa relationship of dissolution medium and drug. With reference to the caffeine module, the detachment of melatonin module facilitated its gastrointestinal transit as a reduced size matrix, with majority of caffeine delivered in colon. The dual site-targeted and -release Dome matrix is applicable as reference oral carrier for pharmaceutical, nutraceutical, functional food and veterinary medicine where a complex formulation and performancein vivoare required.


Assuntos
Quitosana , Melatonina , Alginatos , Celulose , Cafeína , Estômago , Ácidos Hexurônicos
10.
J Biochem Mol Toxicol ; 36(9): e23137, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686336

RESUMO

Prostate cancer (PCa) is a common urinary malignancy. The lack of specific and sensitive biomarkers for the early diagnosis and prognosis of PCa makes it important to seek alternatives. R software was used to analyze the PCa expression profile from data sets in Gene Expression Omnibus. Core differential genes were identified by String and Cytoscape and further validated by Gene Expression Profiling Interactive Analysis (GEPIA) and The Human Protein Atlas (HPA). Gene Ontology analysis was done in the DIVID database and visualization analysis was conducted by Hiplot. Pathway enrichment was analyzed by IPA. To identify potential competitive endogenous RNAs (ceRNA) networks, the experimentally validated microRNA-target interactions database (miRTarBase), The Encyclopedia of RNA Interactomes (StarBase), lncBase, and GEPIA were used. The lncLocator was utilized to perform subcellular localization of long noncoding RNAs (lncRNAs). Both miRTarBase and StarBase were used to find the binding site of mRNAs-miRNAs and miRNAs-lncRNAs. Visualization of the ceRNA network was performed with Cytoscape. Nine genes closely related to the diagnosis and prognosis of PCa were obtained, including four identified biomarkers by HPA, CENPF, TPX2, TK1, and CCNB1, and five novel PCa biomarkers, RRM2, UBE2C, TOP2A, BIRC5, and ZWINT. Pathway analysis indicated that PCa carcinogenesis was highly correlated with liver fibrosis pathways, ILK signaling, and NRF2-mediated oxidative stress response. Two sets of ceRNA networks, BIRC5/hsa-miR-218-5p/NEAT1 and UBE2C/hsa-miR-483-3p/NEAT1 were found to be novel biomarkers for the identification of PCa. The quantitative real-time polymerase chain reaction results verified that UBE2C, BIRC5, and NEAT1 were upregulated and hsa-miR-218-5p and hsa-miR-483-3p were downregulated in human PCa cells compared with normal prostate epithelial cells. The novel identified biomarkers in this study would be valuable for the diagnosis and prognosis of PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Biomarcadores , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2 , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Carbohydr Polym ; 290: 119500, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550778

RESUMO

The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Quitosana , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Quitosana/química , Humanos , Nanomedicina , SARS-CoV-2
12.
J Control Release ; 345: 811-818, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378214

RESUMO

Active targeting strategy is adopted in nanomedicine for cancer treatment. Personalizing the nanomedicine in accordance with patients' omics, under the precision medicine platform, is met with challenges in targeting ligand and matrix material selection at nanoformulation stage. The past 5-year literatures show that the nanoparticulate targeting ligand and matrix material are not selected based upon the cancer omics profiles of patients. The expression of cancer cellular target receptors and metabolizing enzymes is primarily influenced by age, gender, race/ethnic group and geographical origin of patients. The personalized perspective of a nanomedicine cannot be realised with premature digestion of matrix and targeting ligand by specific metabolizing enzymes that are overexpressed by the patients, and unmatched targeting ligand to the majority of cell surface receptors overexpressed in cancer. Omics analysis of individual metabolizing enzyme and cancer cell surface receptor expressed in cancer facilitates targeting ligand and matrix material selection in nanomedicine development.


Assuntos
Nanomedicina , Neoplasias , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Medicina de Precisão
13.
Pharmaceutics ; 14(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335988

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) is one of the preferred polymeric inactive ingredients for long-acting parenteral drug products that are constituted of complex formulations. Despite over 30 years of use, there are still many challenges faced by researchers in formulation-related aspects pertaining to drug loading and release. Until now, PLGA-based complex generic drug products have not been successfully developed. The complexity in developing these generic drug products is not just due to their complex formulation, but also to the manufacturing process of the listed reference drugs that involve PLGA. The composition and product attributes of commercial PLGA formulations vary with the drugs and their intended applications. The lack of standard compendial methods for in vitro release studies hinders generic pharmaceutical companies in their efforts to develop PLGA-based complex generic drug products. In this review, we discuss the challenges faced in developing PLGA-based long-acting injectable/implantable (LAI) drug products; hurdles that are associated with drug loading and release that are dictated by the physicochemical properties of PLGA and product manufacturing processes. Approaches to overcome these challenges and hurdles are highlighted specifically with respect to drug encapsulation and release.

14.
Molecules ; 28(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615286

RESUMO

Abnormal skin pigmentation commonly occurs during the wound healing process due to the overproduction of melanin. Chicken egg white (CEW) has long been used to improve skin health. Previous published works had found CEW proteins house bioactive peptides that inhibit tyrosinase, the key enzyme of melanogenesis. The current study aimed to evaluate the anti-pigmentation potential and mechanism of the CEW-derived peptide (GYSLGNWVCAAK) and hydrolysates (CEWHmono and CEWHdi), using a cell-based model. All of these peptide and hydrolysates inhibited intracellular tyrosinase activity and melanin level up to 45.39 ± 1.31 and 70.01 ± 1.00%, respectively. GYSLGNWVCAAK and CEWHdi reduced intracellular cAMP levels by 13.38 ± 3.65 and 14.55 ± 2.82%, respectively; however, CEWHmono did not affect cAMP level. Moreover, the hydrolysates downregulated the mRNA expression of melanogenesis-related genes, such as Mitf, Tyr, Trp-1 and Trp-2, but GYSLGNWVCAAK only suppressed Tyr gene expression. Downregulation of the genes may lower the catalytic activities and/or affect the structural stability of TYR, TRP-1 and TRP-2; thus, impeding melanogenesis to cause an anti-pigmentation effect in the cell. Outcomes from the current study could serve as the starting point to understand the underlying complex, multifaceted melanogenesis regulatory mechanism at the cellular level.


Assuntos
Melaninas , Monofenol Mono-Oxigenase , Animais , Galinhas/metabolismo , Pigmentação da Pele , Clara de Ovo , Peptídeos/farmacologia
15.
Pharmacol Rev ; 74(4): 962-983, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36779351

RESUMO

Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.


Assuntos
Diabetes Mellitus , Insulina , Nanopartículas , Animais , Glicemia , Diabetes Mellitus/tratamento farmacológico , Glucose/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico , Nanopartículas/química
16.
Pharmaceutics ; 13(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34834240

RESUMO

Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size.

17.
Pharmaceutics ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34683876

RESUMO

Pulmonary delivery of chitosan nanoparticles is met with nanoparticle agglomeration and exhalation. Admixing lactose-based microparticles (surface area-weighted diameter~5 µm) with nanoparticles mutually reduces particle agglomeration through surface adsorption phenomenon. Lactose-polyethylene glycol (PEG) microparticles with different sizes, morphologies and crystallinities were prepared by a spray drying method using varying PEG molecular weights and ethanol contents. The chitosan nanoparticles were similarly prepared. In vitro inhalation performance and peripheral lung deposition of chitosan nanoparticles were enhanced through co-blending with larger lactose-PEG microparticles with reduced specific surface area. These microparticles had reduced inter-microparticle interaction, thereby promoting microparticle-nanoparticle interaction and facilitating nanoparticles flow into peripheral lung.

18.
Front Nutr ; 8: 752207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671634

RESUMO

The present work aimed to investigate the swelling behavior, in vitro digestion, and release of a hydrophobic bioactive compound, thymoquinone (TQ), loaded in Pickering emulsion incorporated in alginate-chitosan hydrogel beads using a simulated gastrointestinal model. In this study, oil-in-water Pickering emulsions of uniform micron droplet sizes were formulated using 20% red palm olein and 0.5% (w/v) cellulose nanocrystals-soy protein isolate (CNC/SPI) complex followed by encapsulation within beads. FT-IR was used to characterize the bonding between the alginate, chitosan, and Pickering emulsion. 2% (w/v) alginate-1% (w/v) chitosan hydrogel beads were found to be spherical with higher stability against structural deformation. The alginate-chitosan beads displayed excellent stability in simulated gastric fluid (SGF) with a low water uptake of ~19%. The hydrogel beads demonstrated a high swelling degree (85%) with a superior water uptake capacity of ~593% during intestinal digestion in simulated intestinal fluid (SIF). After exposure to SIF, the microstructure transformation was observed, causing erosion and degradation of alginate/chitosan wall materials. The release profile of TQ up to 83% was achieved in intestinal digestion, and the release behavior was dominated by diffusion via the bead swelling process. These results provided useful insight into the design of food-grade colloidal delivery systems using protein-polysaccharide complex-stabilized Pickering emulsions incorporated in alginate-chitosan hydrogel beads.

20.
Carbohydr Polym ; 273: 118487, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560934

RESUMO

This study designed chitosan species-coated calcium alginate beads through concurrent core-coat formation. Chitosan oleate was synthesized by carbodiimide chemistry and characterized by 1H NMR and FTIR techniques. Chitosan or chitosan oleate was coated onto the forming alginate or alginate/tripolyphosphate core using vibratory nozzle extrusion-microencapsulation approach, followed by calcium crosslinking. Chlorpheniramine maleate served as a model water-soluble drug. The molecular characteristics, size, shape, morphology, swelling, erosion, water uptake, drug content and drug release profiles of beads were evaluated. Discrete spherical coated beads were obtained through minimizing successive bead adhesion through an interplay of nozzle vibrational frequency and polymeric solution flow rate. The tripolyphosphate ions in the core possessed higher diffusional kinetics than alginate and were better able to attract chitosan species onto bead surfaces to facilitate alginate-chitosan coacervation. Amphiphilic chitosan oleate formed smaller aggregates than chitosan. It interacted with greater ease with core alginate and tripolyphosphate. The gain in alginate/tripolyphosphate interaction with chitosan oleate at the core-coat interface enhanced bead robustness against swelling and water uptake with drug release consequently dependent on the loss of alginate-drug interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...