Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2842, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606362

RESUMO

Anti-angiogenic cancer therapies possess immune-stimulatory properties by counteracting pro-angiogenic molecular mechanisms. We report that tumor endothelial cells ubiquitously overexpress and secrete the intermediate filament protein vimentin through type III unconventional secretion mechanisms. Extracellular vimentin is pro-angiogenic and functionally mimics VEGF action, while concomitantly acting as inhibitor of leukocyte-endothelial interactions. Antibody targeting of extracellular vimentin shows inhibition of angiogenesis in vitro and in vivo. Effective and safe inhibition of angiogenesis and tumor growth in several preclinical and clinical studies is demonstrated using a vaccination strategy against extracellular vimentin. Targeting vimentin induces a pro-inflammatory condition in the tumor, exemplified by induction of the endothelial adhesion molecule ICAM1, suppression of PD-L1, and altered immune cell profiles. Our findings show that extracellular vimentin contributes to immune suppression and functions as a vascular immune checkpoint molecule. Targeting of extracellular vimentin presents therefore an anti-angiogenic immunotherapy strategy against cancer.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Filamentos Intermediários/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vimentina
2.
Cancers (Basel) ; 12(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967224

RESUMO

Combined application of multiple therapeutic agents presents the possibility of enhanced efficacy and reduced development of resistance. Definition of the most appropriate combination for any given disease phenotype is challenged by the vast number of theoretically possible combinations of drugs and doses, making extensive empirical testing a virtually impossible task. We have used the streamlined-feedback system control (s-FSC) technique, a phenotypic approach, which converges to optimized drug combinations (ODC) within a few experimental steps. Phosphoproteomics analysis coupled to kinase activity analysis using the novel INKA (integrative inferred kinase activity) pipeline was performed to evaluate ODC mechanisms in a panel of renal cell carcinoma (RCC) cell lines. We identified different ODC with up to 95% effectivity for each RCC cell line, with low doses (ED5-25) of individual drugs. Global phosphoproteomics analysis demonstrated inhibition of relevant kinases, and targeting remaining active kinases with additional compounds improved efficacy. In addition, we identified a common RCC ODC, based on kinase activity data, to be effective in all RCC cell lines under study. Combining s-FSC with a phosphoproteomic profiling approach provides valuable insight in targetable kinase activity and allows for the identification of superior drug combinations for the treatment of RCC.

3.
Org Chem Front ; 6(16): 2981-2990, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34912566

RESUMO

Galectins have diverse functions and are involved in many biological processes because of their complex intra- and extracellular activities. Selective and potent inhibitors for galectins will be valuable tools to investigate the biological functions of these proteins. Therefore, we describe here the synthesis of galectin inhibitors with a potential "chelate effect". These compounds are designed to bind to two different binding sites on galectins simultaneously. In this paper a series of asymmetric "hybrid" compounds are prepared, which combine two galectin ligands (1) a substituted thiodigalactoside derivative and (2) an antagonist calixarene-based therapeutic agent. NMR spectroscopy was used to evaluate the interactions of these compounds with Galectin-1 and -3. In addition, cellular experiments were conducted to compare the cytotoxic effects of the hybrids with those of a calixarene derivative. While only the thiodigalactoside part of the hybrids showed strong binding, the calixarene part was responsible for observed cytoxoxicity effects, suggesting that the calixarene moiety may also be addressing a non-galectin target.

4.
Angiogenesis ; 20(4): 641-654, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28951988

RESUMO

Tumor angiogenesis is characterized by deregulated gene expression in endothelial cells (EC). While studies until now have mainly focused on overexpressed genes in tumor endothelium, we here describe the identification of transcripts that are repressed in tumor endothelium and thus have potential suppressive effects on angiogenesis. We identified nineteen putative angiosuppressor genes, one of them being bromodomain containing 7 (BRD7), a gene that has been assigned tumor suppressor properties. BRD7 was studied in more detail, and we demonstrate that BRD7 expression is inversely related to EC activation. Ectopic expression of BRD7 resulted in a dramatic reduction of EC proliferation and viability. Furthermore, overexpression of BRD7 resulted in a bromodomain-dependent induction of NFκB-activity and NFκB-dependent gene expression, including ICAM1, enabling leukocyte-endothelial interactions. In silico functional annotation analysis of genome-wide expression data on BRD7 knockdown and overexpression revealed that the transcriptional signature of low BRD7 expressing cells is associated with increased angiogenesis (a.o. upregulation of angiopoietin-2, VEGF receptor-1 and neuropilin-1), cytokine activity (a.o. upregulation of CXCL1 and CXCL6), and a reduction of immune surveillance (TNF-α, NFκB, ICAM1). Thus, combining in silico and in vitro data reveals multiple pathways of angiosuppressor and anti-tumor activities of BRD7.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Endotélio/metabolismo , Testes Genéticos , Neovascularização Patológica/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Citocinas/metabolismo , Regulação para Baixo/genética , Células Endoteliais/metabolismo , Endotélio/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Inflamação/patologia , Neovascularização Patológica/patologia
5.
Oncotarget ; 8(26): 42949-42961, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28487489

RESUMO

Bevacizumab (bvz) is currently employed as an anti-angiogenic therapy across several cancer indications. Bvz response heterogeneity has been well documented, with only 10-15% of colorectal cancer (CRC) patients benefitting in general. For other patients, clinical efficacy is limited and side effects are significant. This reinforces the need for a robust predictive biomarker of response. To identify such a biomarker, we performed a DNA microarray-based transcriptional profiling screen with primary endothelial cells (ECs) isolated from normal and tumour colon tissues. Thirteen separate populations of tumour-associated ECs and 10 of normal ECs were isolated using fluorescence-activated cell sorting. We hypothesised that VEGF-induced genes were overexpressed in tumour ECs; these genes could relate to bvz response and serve as potential predictive biomarkers. Transcriptional profiling revealed a total of 2,610 differentially expressed genes when tumour and normal ECs were compared. To explore their relation to bvz response, the mRNA expression levels of top-ranked genes were examined using quantitative PCR in 30 independent tumour tissues from CRC patients that received bvz in the adjuvant setting. These analyses revealed that the expression of MMP12 and APLN mRNA was significantly higher in bvz non-responders compared to responders. At the protein level, high APLN expression was correlated with poor progression-free survival in bvz-treated patients. Thus, high APLN expression may represent a novel predictive biomarker for bvz unresponsiveness.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Apelina/genética , Bevacizumab/uso terapêutico , Biomarcadores Tumorais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apelina/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Sci Rep ; 7: 43005, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223694

RESUMO

Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells.


Assuntos
Cloridrato de Erlotinib/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/fisiologia , Cimenos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Compostos Organometálicos/química , Compostos Organometálicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
7.
Int J Cancer ; 139(4): 824-35, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27062254

RESUMO

Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Galectina 1/metabolismo , Neovascularização Patológica/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Antineoplásicos/imunologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Feminino , Galectina 1/antagonistas & inibidores , Galectina 1/química , Galectina 1/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Camundongos , Modelos Moleculares , Conformação Molecular , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/genética , Ligação Proteica , Especificidade da Espécie , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Angiogenesis ; 18(3): 233-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824484

RESUMO

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Algoritmos , Animais , Apoptose , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Galinhas , Membrana Corioalantoide/metabolismo , Cimenos , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/citologia , Retroalimentação , Feminino , Humanos , Imidazóis/administração & dosagem , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Organometálicos/administração & dosagem , Neoplasias Ovarianas/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Quinolinas/administração & dosagem , Processos Estocásticos
9.
Sci Rep ; 5: 8990, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758612

RESUMO

Tumor vasculature is known to be poorly organized leading to increased leakage of molecules to the extravascular space. This process can potentially increase interstitial fluid pressure impairing intra-tumoral blood flow and oxygen supply, and can affect drug uptake. Anti-angiogenic therapies are believed to reduce vascular permeability, potentially reducing interstitial fluid pressure and improving the extravasation of small molecule-based chemotherapeutics. Here we show that pretreatment of human ovarian carcinoma tumors with sub-optimal doses of the VEGFR targeting tyrosine kinase inhibitor axitinib, but not the EGFR targeting kinase inhibitor erlotinib, induces a transient period of increased tumor oxygenation. Doxorubicin administered within this window was found to enter the extravascular tumor space more rapidly compared to doxorubicin when applied alone or outside this time window. Treatment with the chemotherapeutics, doxorubicin and RAPTA-C, as well as applying photodynamic therapy during this period of elevated oxygenation led to enhanced tumor growth inhibition. Improvement of therapy was not observed when applied outside the window of increased oxygenation. Taken together, these findings further confirm the hypothesis of angiostasis-induced vascular normalization and also help to understand the interactions between anti-angiogenesis and other anti-cancer strategies.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias/patologia , Neovascularização Patológica , Fotoquimioterapia , Inibidores da Angiogênese/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Axitinibe , Linhagem Celular Tumoral , Embrião de Galinha , Terapia Combinada , Cimenos , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Imidazóis/farmacologia , Indazóis/farmacologia , Indóis/farmacologia , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularização Patológica/tratamento farmacológico , Compostos Organometálicos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Sunitinibe , Carga Tumoral/efeitos dos fármacos
10.
J Cell Mol Med ; 16(7): 1553-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21880113

RESUMO

Targeted angiostatic therapy receives major attention for the treatment of cancer and exudative age-related macular degeneration (AMD). Photodynamic therapy (PDT) has been used as an effective clinical approach for these diseases. As PDT can cause an angiogenic response in the treated tissue, combination of PDT with anti-angiogenic compounds should lead to improved therapy. This study was undertaken to test the clinically used small molecule kinase inhibitors Nexavar® (sorafenib), Tarceva® (erlotinib) and Sutent® (sunitinib) for this purpose, and to compare the results to the combination of Visudyne®-PDT with Avastin® (bevacizumab) treatment. When topically applied to the chicken chorioallantoic membrane at embryo development day (EDD) 7, a clear inhibition of blood vessel development was observed, with sorafenib being most efficient. To investigate the combination with phototherapy, Visudyne®-PDT was first applied on EDD11 to close all <100 µm vessels. Application of angiostatics after PDT resulted in a significant decrease in vessel regrowth in terms of reduced vessel density and number of branching points/mm(2) . As the 50% effective dose (ED50) for all compounds was approximately 10-fold lower, Sorafenib outperformed the other compounds. In vitro, all kinase inhibitors decreased the viability of human umbilical vein endothelial cells. Sunitinib convincingly inhibited the in vitro migration of endothelial cells. These results suggest the therapeutic potential of these compounds for application in combination with PDT in anti-cancer approaches, and possibly also in the treatment of other diseases where angiogenesis plays an important role.


Assuntos
Inibidores da Angiogênese/farmacologia , Membrana Corioalantoide/efeitos dos fármacos , Fotoquimioterapia/métodos , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Benzenossulfonatos/farmacologia , Bevacizumab , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Cloridrato de Erlotinib , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Indóis/farmacologia , Microscopia de Fluorescência/métodos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Porfirinas/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Sorafenibe , Sunitinibe , Verteporfina , Degeneração Macular Exsudativa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...