Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38048245

RESUMO

In the past decades, supervised cross-modal hashing methods have attracted considerable attentions due to their high searching efficiency on large-scale multimedia databases. Many of these methods leverage semantic correlations among heterogeneous modalities by constructing a similarity matrix or building a common semantic space with the collective matrix factorization method. However, the similarity matrix may sacrifice the scalability and cannot preserve more semantic information into hash codes in the existing methods. Meanwhile, the matrix factorization methods cannot embed the main modality-specific information into hash codes. To address these issues, we propose a novel supervised cross-modal hashing method called random online hashing (ROH) in this article. ROH proposes a linear bridging strategy to simplify the pair-wise similarities factorization problem into a linear optimization one. Specifically, a bridging matrix is introduced to establish a bidirectional linear relation between hash codes and labels, which preserves more semantic similarities into hash codes and significantly reduces the semantic distances between hash codes of samples with similar labels. Additionally, a novel maximum eigenvalue direction (MED) embedding method is proposed to identify the direction of maximum eigenvalue for the original features and preserve critical information into modality-specific hash codes. Eventually, to handle real-time data dynamically, an online structure is adopted to solve the problem of dealing with new arrival data chunks without considering pairwise constraints. Extensive experimental results on three benchmark datasets demonstrate that the proposed ROH outperforms several state-of-the-art cross-modal hashing methods.

2.
IEEE Trans Image Process ; 32: 2017-2032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018080

RESUMO

As a branch of transfer learning, domain adaptation leverages useful knowledge from a source domain to a target domain for solving target tasks. Most of the existing domain adaptation methods focus on how to diminish the conditional distribution shift and learn invariant features between different domains. However, two important factors are overlooked by most existing methods: 1) the transferred features should be not only domain invariant but also discriminative and correlated, and 2) negative transfer should be avoided as much as possible for the target tasks. To fully consider these factors in domain adaptation, we propose a guided discrimination and correlation subspace learning (GDCSL) method for cross-domain image classification. GDCSL considers the domain-invariant, category-discriminative, and correlation learning of data. Specifically, GDCSL introduces the discriminative information associated with the source and target data by minimizing the intraclass scatter and maximizing the interclass distance. By designing a new correlation term, GDCSL extracts the most correlated features from the source and target domains for image classification. The global structure of the data can be preserved in GDCSL because the target samples are represented by the source samples. To avoid negative transfer issues, we use a sample reweighting method to detect target samples with different confidence levels. A semi-supervised extension of GDCSL (Semi-GDCSL) is also proposed, and a novel label selection scheme is introduced to ensure the correction of the target pseudo-labels. Comprehensive and extensive experiments are conducted on several cross-domain data benchmarks. The experimental results verify the effectiveness of the proposed methods over state-of-the-art domain adaptation methods.

3.
Comput Biol Med ; 152: 106406, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521357

RESUMO

Diabetic retinopathy (DR), one of the most common and serious complications of diabetes, has become one of the main blindness diseases. The retinal vasculature is the only part of the human circulatory system that allows direct noninvasive visualization of the body's microvasculature, which provides the opportunity to detect the structural and functional changes before DR becomes unable to intervene. For decades, as the fundamental step in computer-assisted analysis of retinopathy, retinal vascular extraction methods have been largely developed. However, further research focusing on retinal vascular analysis is still in its infancy. Meanwhile, due to the complexity of retinal vascular structure, the relationship between vascular geometry and DR has never been concluded. This paper aims to provide a novel computer-aided shape analysis system for retinal vessels. To perform retinal vascular shape analysis, a mathematical geometric representation is firstly generated by utilizing the proposed shape modeling method. Then, several useful statistical tools (e.g. Graph Mean, Graph PCA) are adopted to quantitatively analyze the vascular shape. Besides, in order to visualize the changes in vascular shape in the progression of DR, a geodesic tool is used to display the deformation process for ophthalmologists to observe. The efficacy of this analysis system is demonstrated in the EyePACS dataset and the subsequent visit records of 98 patients from the proprietary dataset. The experimental results show that there is a certain correlation between the variation of retinal vascular shape and DR progression, and the Graph PCA scores of retinal vessels are negatively correlated with DR grades. The code of our RV-ESA system can be publicly available at github.com/XiaolingLuo/RV-ESA.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Vasos Retinianos/diagnóstico por imagem , Computadores
4.
IEEE Trans Cybern ; 52(3): 1553-1564, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32452782

RESUMO

The critical step of learning the robust regression model from high-dimensional visual data is how to characterize the error term. The existing methods mainly employ the nuclear norm to describe the error term, which are robust against structure noises (e.g., illumination changes and occlusions). Although the nuclear norm can describe the structure property of the error term, global distribution information is ignored in most of these methods. It is known that optimal transport (OT) is a robust distribution metric scheme due to that it can handle correspondences between different elements in the two distributions. Leveraging this property, this article presents a novel robust regression scheme by integrating OT with convex regularization. The OT-based regression with L2 norm regularization (OTR) is first proposed to perform image classification. The alternating direction method of multipliers is developed to handle the model. To further address the occlusion problem in image classification, the extended OTR (EOTR) model is then presented by integrating the nuclear norm error term with an OTR model. In addition, we apply the alternating direction method of multipliers with Gaussian back substitution to solve EOTR and also provide the complexity and convergence analysis of our algorithms. Experiments were conducted on five benchmark datasets, including illumination changes and various occlusions. The experimental results demonstrate the performance of our robust regression model on biometric image classification against several state-of-the-art regression-based classification methods.


Assuntos
Algoritmos
5.
Musculoskelet Sci Pract ; 47: 102173, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452391

RESUMO

BACKGROUND: Psychological factors may affect the pain level, shoulder function and quality of life in patients with rotator cuff tendinopathy. OBJECTIVE: To systematically review the prevalence of psychological factors reported in patients with rotator cuff tendinopathy; and to determine the association between psychological factors and pain, function and quality of life in patients with rotator cuff tendinopathy. STUDY DESIGN: Systematic review METHODS: Pubmed, Embase, CINAHL and Web of Science were systematically searched from inception to June 2019. Studies that investigated patients with signs and symptoms suggestive of rotator cuff tendinopathy, and reported psychological variables and patient-reported outcome measures including pain, shoulder function or disability and quality of life. RESULTS: A total of 14 studies were included. Our results showed that 22.8%-26.2% of patients with rotator cuff tendinopathy reported depression; 23% reported anxiety; and 70.2%-89% of patients reported sleep disturbance or insomnia. Overall, nine psychological factors were identified to be associated with pain, function and quality of life in patients with rotator cuff tendinopathy. Low-to-moderate quality of evidence suggests that various psychological factors are associated with pain, function and quality of life in patients with rotator cuff tendinopathy CONCLUSION: This review identified various psychological factors may affect the pain level, shoulder function and quality of life in patients with rotator cuff tendinopathy, and the causal relationship warrants future high-quality prospective studies.


Assuntos
Atitude Frente a Saúde , Dor/psicologia , Pacientes/psicologia , Qualidade de Vida/psicologia , Lesões do Manguito Rotador/psicologia , Lesões do Manguito Rotador/terapia , Tendinopatia/psicologia , Tendinopatia/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Avaliação da Deficiência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/fisiopatologia , Estudos Prospectivos , Recuperação de Função Fisiológica , Tendinopatia/fisiopatologia , Resultado do Tratamento
6.
Neural Netw ; 125: 245-257, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146355

RESUMO

As a famous multivariable analysis technique, regression methods, such as ridge regression, are widely used for image representation and dimensionality reduction. However, the metric of ridge regression and its variants is always the Frobenius norm (F-norm), which is sensitive to outliers and noise in data. At the same time, the performance of the ridge regression and its extensions is limited by the class number of the data. To address these problems, we propose a novel regression learning method which named low-rank discriminative regression learning (LDRL) for image representation. LDRL assumes that the input data is corrupted and thus the L1 norm can be used as a sparse constraint on the noised matrix to recover the clean data for regression, which can improve the robustness of the algorithm. Due to learn a novel project matrix that is not limited by the number of classes, LDRL is suitable for classifying the data set no matter whether there is a small or large number of classes. The performance of the proposed LDRL is evaluated on six public image databases. The experimental results prove that LDRL obtains better performance than existing regression methods.


Assuntos
Aprendizado de Máquina , Reconhecimento Automatizado de Padrão/métodos
7.
IEEE Trans Cybern ; 50(10): 4495-4507, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31831459

RESUMO

Neighborhood preserving embedding (NPE) has been proposed to encode overall geometry manifold embedding information. However, the class-special structure of the data is destroyed by noise or outliers existing in the data. To address this problem, in this article, we propose a novel embedding approach called robust flexible preserving embedding (RFPE). First, RFPE recovers the noisy data by low-rank learning and obtains clean data. Then, the clean data are used to learn the projection matrix. In this way, the projective learning is totally unaffected by noise or outliers. By encoding a flexible regularization term, RFPE can keep the property of the data points with a nonlinear manifold and be more flexible. RFPE searches the optimal projective subspace for feature extraction. In addition, we also extend the proposed RFPE to a kernel case and propose kernel RFPE (KRFPE). Extensive experiments on six public image databases show the superiority of the proposed methods over other state-of-the-art methods.

8.
IEEE Trans Image Process ; 28(10): 4803-4818, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31071030

RESUMO

Compact hash code learning has been widely applied to fast similarity search owing to its significantly reduced storage and highly efficient query speed. However, it is still a challenging task to learn discriminative binary codes for perfectly preserving the full pairwise similarities embedded in the high-dimensional real-valued features, such that the promising performance can be guaranteed. To overcome this difficulty, in this paper, we propose a novel scalable supervised asymmetric hashing (SSAH) method, which can skillfully approximate the full-pairwise similarity matrix based on maximum asymmetric inner product of two different non-binary embeddings. In particular, to comprehensively explore the semantic information of data, the supervised label information and the refined latent feature embedding are simultaneously considered to construct the high-quality hashing function and boost the discriminant of the learned binary codes. Specifically, SSAH learns two distinctive hashing functions in conjunction of minimizing the regression loss on the semantic label alignment and the encoding loss on the refined latent features. More importantly, instead of using only part of similarity correlations of data, the full-pairwise similarity matrix is directly utilized to avoid information loss and performance degeneration, and its cumbersome computation complexity on n ×n matrix can be dexterously manipulated during the optimization phase. Furthermore, an efficient alternating optimization scheme with guaranteed convergence is designed to address the resulting discrete optimization problem. The encouraging experimental results on diverse benchmark datasets demonstrate the superiority of the proposed SSAH method in comparison with many recently proposed hashing algorithms.

9.
IEEE Trans Cybern ; 49(5): 1859-1872, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29994294

RESUMO

2-D neighborhood preserving projection (2DNPP) uses 2-D images as feature input instead of 1-D vectors used by neighborhood preserving projection (NPP). 2DNPP requires less computation time than NPP. However, both NPP and 2DNPP use the L 2 norm as a metric, which is sensitive to noise in data. In this paper, we proposed a novel NPP method called low-rank 2DNPP (LR-2DNPP). This method divided the input data into a component part that encoded low-rank features, and an error part that ensured the noise was sparse. Then, a nearest neighbor graph was learned from the clean data using the same procedure as 2DNPP. To ensure that the features learned by LR-2DNPP were optimal for classification, we combined the structurally incoherent learning and low-rank learning with NPP to form a unified model called discriminative LR-2DNPP (DLR-2DNPP). By encoding the structural incoherence of the learned clean data, DLR-2DNPP could enhance the discriminative ability for feature extraction. Theoretical analyses on the convergence and computational complexity of LR-2DNPP and DLR-2DNPP were presented in details. We used seven public image databases to verify the performance of the proposed methods. The experimental results showed the effectiveness of our methods for robust image representation.

10.
IEEE Trans Neural Netw Learn Syst ; 30(4): 1133-1149, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30137017

RESUMO

In this paper, we propose a unified model called flexible affinity matrix learning (FAML) for unsupervised and semisupervised classification by exploiting both the relationship among data and the clustering structure simultaneously. To capture the relationship among data, we exploit the self-expressiveness property of data to learn a structured matrix in which the structures are induced by different norms. A rank constraint is imposed on the Laplacian matrix of the desired affinity matrix, so that the connected components of data are exactly equal to the cluster number. Thus, the clustering structure is explicit in the learned affinity matrix. By making the estimated affinity matrix approximate the structured matrix during the learning procedure, FAML allows the affinity matrix itself to be adaptively adjusted such that the learned affinity matrix can well capture both the relationship among data and the clustering structure. Thus, FAML has the potential to perform better than other related methods. We derive optimization algorithms to solve the corresponding problems. Extensive unsupervised and semisupervised classification experiments on both synthetic data and real-world benchmark data sets show that the proposed FAML consistently outperforms the state-of-the-art methods.

11.
Neural Netw ; 108: 202-216, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30216870

RESUMO

In this paper, we propose a robust subspace learning (SL) framework for dimensionality reduction which further extends the existing SL methods to a low-rank and sparse embedding (LRSE) framework from three aspects: overall optimum, robustness and generalization. Owing to the uses of low-rank and sparse constraints, both the global subspaces and local geometric structures of data are captured by the reconstruction coefficient matrix and at the same time the low-dimensional embedding of data are enforced to respect the low-rankness and sparsity. In this way, the reconstruction coefficient matrix learning and SL are jointly performed, which can guarantee an overall optimum. Moreover, we adopt a sparse matrix to model the noise which makes LRSE robust to the different types of noise. The combination of global subspaces and local geometric structures brings better generalization for LRSE than related methods, i.e., LRSE performs better than conventional SL methods in unsupervised and supervised scenarios, particularly in unsupervised scenario the improvement of classification accuracy is considerable. Seven specific SL methods including unsupervised and supervised methods can be derived from the proposed framework and the experiments on different data sets (including corrupted data) demonstrate the superiority of these methods over the existing, well-established SL methods. Further, we exploit experiments to provide some new insights for SL.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Inteligência Artificial/tendências , Bases de Dados Factuais/tendências , Humanos , Aprendizado de Máquina/tendências , Reconhecimento Automatizado de Padrão/tendências , Estimulação Luminosa/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-30176594

RESUMO

Recently, hash learning attracts great attentions since it can obtain fast image retrieval on large-scale datasets by using a series of discriminative binary codes. The popular methods include manifold-based hashing methods, which aim to learn the binary codes by embedding the original high-dimensional data into low-dimensional intrinsic subspace. However, most of these methods tend to relax the discrete constraint to compute the final binary codes in an easier way. Therefore, the information loss will increase. In this paper, we propose a novel jointly sparse regression model to minimize the locality information loss and obtain jointly sparse hashing method. The proposed model integrates locality, joint sparsity and rotation operation together with a seamless formulation. Thus, the drawback in previous methods using two separated and independent stages such as PCA-ITQ and the similar methods can be addressed. Moreover, since we introduce the joint sparsity, the feature extraction and jointly sparse feature selection can also be realized in a single projection operation, which has the potentials to select more discriminant features. The convergence of the proposed algorithm is proved, and the essences of the iterative procedures are also revealed. The experimental results on large-scale datasets demonstrate the performance of the proposed method.

13.
IEEE Trans Neural Netw Learn Syst ; 29(11): 5228-5241, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29994377

RESUMO

Feature extraction plays a significant role in pattern recognition. Recently, many representation-based feature extraction methods have been proposed and achieved successes in many applications. As an excellent unsupervised feature extraction method, latent low-rank representation (LatLRR) has shown its power in extracting salient features. However, LatLRR has the following three disadvantages: 1) the dimension of features obtained using LatLRR cannot be reduced, which is not preferred in feature extraction; 2) two low-rank matrices are separately learned so that the overall optimality may not be guaranteed; and 3) LatLRR is an unsupervised method, which by far has not been extended to the supervised scenario. To this end, in this paper, we first propose to use two different matrices to approximate the low-rank projection in LatLRR so that the dimension of obtained features can be reduced, which is more flexible than original LatLRR. Then, we treat the two low-rank matrices in LatLRR as a whole in the process of learning. In this way, they can be boosted mutually so that the obtained projection can extract more discriminative features. Finally, we extend LatLRR to the supervised scenario by integrating feature extraction with the ridge regression. Thus, the process of feature extraction is closely related to the classification so that the extracted features are discriminative. Extensive experiments are conducted on different databases for unsupervised and supervised feature extraction, and very encouraging results are achieved in comparison with many state-of-the-arts methods.

14.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1006-1018, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166507

RESUMO

Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

15.
IEEE Trans Neural Netw Learn Syst ; 29(6): 2502-2515, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28500010

RESUMO

This paper proposes a novel method, called robust latent subspace learning (RLSL), for image classification. We formulate an RLSL problem as a joint optimization problem over both the latent SL and classification model parameter predication, which simultaneously minimizes: 1) the regression loss between the learned data representation and objective outputs and 2) the reconstruction error between the learned data representation and original inputs. The latent subspace can be used as a bridge that is expected to seamlessly connect the origin visual features and their class labels and hence improve the overall prediction performance. RLSL combines feature learning with classification so that the learned data representation in the latent subspace is more discriminative for classification. To learn a robust latent subspace, we use a sparse item to compensate error, which helps suppress the interference of noise via weakening its response during regression. An efficient optimization algorithm is designed to solve the proposed optimization problem. To validate the effectiveness of the proposed RLSL method, we conduct experiments on diverse databases and encouraging recognition results are achieved compared with many state-of-the-arts methods.

16.
IEEE Trans Cybern ; 46(8): 1828-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26259210

RESUMO

Low-rank representation (LRR) has been successfully applied in exploring the subspace structures of data. However, in previous LRR-based semi-supervised subspace clustering methods, the label information is not used to guide the affinity matrix construction so that the affinity matrix cannot deliver strong discriminant information. Moreover, these methods cannot guarantee an overall optimum since the affinity matrix construction and subspace clustering are often independent steps. In this paper, we propose a robust semi-supervised subspace clustering method based on non-negative LRR (NNLRR) to address these problems. By combining the LRR framework and the Gaussian fields and harmonic functions method in a single optimization problem, the supervision information is explicitly incorporated to guide the affinity matrix construction and the affinity matrix construction and subspace clustering are accomplished in one step to guarantee the overall optimum. The affinity matrix is obtained by seeking a non-negative low-rank matrix that represents each sample as a linear combination of others. We also explicitly impose the sparse constraint on the affinity matrix such that the affinity matrix obtained by NNLRR is non-negative low-rank and sparse. We introduce an efficient linearized alternating direction method with adaptive penalty to solve the corresponding optimization problem. Extensive experimental results demonstrate that NNLRR is effective in semi-supervised subspace clustering and robust to different types of noise than other state-of-the-art methods.

17.
IEEE Trans Neural Netw Learn Syst ; 27(4): 723-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25955995

RESUMO

Locally linear embedding (LLE) is one of the most well-known manifold learning methods. As the representative linear extension of LLE, orthogonal neighborhood preserving projection (ONPP) has attracted widespread attention in the field of dimensionality reduction. In this paper, a unified sparse learning framework is proposed by introducing the sparsity or L1-norm learning, which further extends the LLE-based methods to sparse cases. Theoretical connections between the ONPP and the proposed sparse linear embedding are discovered. The optimal sparse embeddings derived from the proposed framework can be computed by iterating the modified elastic net and singular value decomposition. We also show that the proposed model can be viewed as a general model for sparse linear and nonlinear (kernel) subspace learning. Based on this general model, sparse kernel embedding is also proposed for nonlinear sparse feature extraction. Extensive experiments on five databases demonstrate that the proposed sparse learning framework performs better than the existing subspace learning algorithm, particularly in the cases of small sample sizes.

18.
IEEE Trans Cybern ; 45(11): 2425-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26470058

RESUMO

Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.

19.
Sci Rep ; 5: 14050, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26360613

RESUMO

Detectable low circulating level of cardiac troponin T (cTnT) may reflect subclinical myocardial injury. We tested the hypothesis that circulating levels of hs-cTnT are altered in adults with repaired tetralogy of Fallot (TOF) and associated with ventricular volume load and function. Eighty-eight TOF patients and 48 controls were studied. Plasma hs-cTnT levels were determined using a highly sensitive assay (hs-cTnT). The right (RV) and left ventricular (LV) volumes and ejection fraction (EF) were measured using 3D echocardiography and, in 52 patients, cardiac magnetic resonance (CMR). The median (interquartile range) for male and female patients were 4.87 (3.83-6.62) ng/L and 3.11 (1.00-3.87) ng/L, respectively. Thirty percent of female but none of the male patients had increased hs-cTnT levels. Female patients with elevated hs-cTnT levels, compared to those without, had greater RV end-diastolic and end-systolic volumes and LV systolic dyssynchrony index (all p < 0.05). For patient cohort only, hs-cTnT levels correlated positively with CMR-derived RV end-diastolic volume and negatively with echocardiography-derived LV and RV EF (all p < 0.05). Multiple linear regression identified sex and RV EF as significant correlates of log-transformed hs-cTnT levels. Increased hs-cTnT levels occur in 30% of female patients after TOF repair, and are associated with greater RV volumes and worse RV EF.


Assuntos
Tetralogia de Fallot/sangue , Troponina T/sangue , Adolescente , Adulto , Procedimentos Cirúrgicos Cardíacos , Estudos de Casos e Controles , Ecocardiografia , Feminino , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Miocárdio/metabolismo , Estudos Prospectivos , Volume Sistólico , Tetralogia de Fallot/diagnóstico , Tetralogia de Fallot/fisiopatologia , Tetralogia de Fallot/cirurgia , Adulto Jovem
20.
IEEE Trans Image Process ; 24(9): 2760-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25910093

RESUMO

Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure construction but are not competent in handling new samples. To this end, a novel nonnegative sparse graph (NNSG) learning method was first proposed. Then, both the label prediction and projection learning were integrated into linear regression. Finally, the linear regression and graph structure learning were unified within the same framework to overcome these two drawbacks. Therefore, a novel method, named learning a NNSG for linear regression was presented, in which the linear regression and graph learning were simultaneously performed to guarantee an overall optimum. In the learning process, the label information can be accurately propagated via the graph structure so that the linear regression can learn a discriminative projection to better fit sample labels and accurately classify new samples. An effective algorithm was designed to solve the corresponding optimization problem with fast convergence. Furthermore, NNSG provides a unified perceptiveness for a number of graph-based learning methods and linear regression methods. The experimental results showed that NNSG can obtain very high classification accuracy and greatly outperforms conventional G-SSL methods, especially some conventional graph construction methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...