Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Comp Exp Biol ; 301(7): 559-68, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15229866

RESUMO

The crab-eating frog Rana cancrivora is one of only a handful of amphibians worldwide that tolerate saline waters. They typically inhabit brackish water of mangrove forests of Southeast Asia, but live happily in freshwater and can be acclimated to 75% seawater (25 ppt) or higher. We report here that after transfer of juvenile R. cancrivora from freshwater (1 ppt) to brackish water (10 -->20 or 20 -->25 ppt; 4-8 d) there was a significant increase in the specific activity of the key hepatic ornithine urea cycle enzyme (OUC), carbamoyl phosphate synthetase I (CPSase I). At 20 ppt, plasma, liver and muscle urea levels increased by 22-, 21-, and 11-fold, respectively. As well, muscle total amino acid levels were significantly elevated by 6-fold, with the largest changes occurring in glycine and beta-alanine levels. In liver, taurine levels were 5-fold higher in frogs acclimated to 20 ppt. There were no significant changes in urea or ammonia excretion rates to the environment. As well, the rate of urea influx (J(in) (urea)) and efflux (J(out) (urea)) across the ventral pelvic skin did not differ between frogs acclimated to 1 versus 20 ppt. Taken together, these findings suggest that acclimation to saline water involves the up-regulation of hepatic urea synthesis, which in turn contributes to the dramatic rise in tissue urea levels. The lack of change in urea excretion rates, despite the large increase in tissue-to-water gradients further indicates that mechanisms must be in place to prevent excessive loss of urea in saline waters, but these mechanisms do not include cutaneous urea uptake. Also, amino acid accumulation may contribute to an overall rise in the osmolarity of the muscle tissue, but relative to urea, the contribution is small.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/biossíntese , Ranidae/metabolismo , Cloreto de Sódio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Aminoácidos/metabolismo , Análise de Variância , Animais , Transporte Biológico , Indução Enzimática , Água Doce , Fígado/enzimologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Ranidae/fisiologia , Água do Mar , Taurina/metabolismo , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...