Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0232921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151927

RESUMO

Radiotherapy plays a major role in the curative treatment of head and neck cancer, either as a single modality therapy, or in combination with surgery or chemotherapy, or both. Despite advances to limit radiation-induced side-effects, the major salivary glands are often affected. This frequently leads to hyposalivation which causes an increased risk for xerostomia, dental caries, mucositis, and malnutrition culminating in a significant impact on patients' quality of life. Previous research demonstrated that loss of salivary function is associated with a decrease in polarity regulators and an increase in nuclear Yap localization in a putative stem and progenitor cell (SPC) population. Yap activation has been shown to be essential for regeneration in intestinal injury models; however, the highest levels of nuclear Yap are observed in irradiated salivary SPCs that do not regenerate the gland. Thus, elucidating the inputs that regulate nuclear Yap localization and determining the role that Yap plays within the entire tissue following radiation damage and during regeneration is critical. In this study, we demonstrate that radiation treatment increases nuclear Yap localization in acinar cells and Yap-regulated genes in parotid salivary tissues. Conversely, administration of insulin-like growth factor 1 (IGF1), known to restore salivary function in mouse models, reduces nuclear Yap localization and Yap transcriptional targets to levels similar to untreated tissues. Activation of Rho-associated protein kinase (ROCK) using calpeptin results in increased Yap-regulated genes in primary acinar cells while inhibition of ROCK activity (Y-27632) leads to decreased Yap transcriptional targets. These results suggest that Yap activity is dependent on ROCK activity and provides new mechanistic insights into the regulation of radiation-induced hyposalivation.


Assuntos
Glândula Parótida/metabolismo , Glândulas Salivares/metabolismo , Quinases Associadas a rho/metabolismo , Células Acinares/metabolismo , Células Acinares/efeitos da radiação , Animais , Células Cultivadas , Cárie Dentária/metabolismo , Dipeptídeos/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Glândula Parótida/efeitos da radiação , Lesões por Radiação/metabolismo , Glândulas Salivares/efeitos da radiação , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Xerostomia/metabolismo
2.
PLoS One ; 14(7): e0219572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287841

RESUMO

Radiotherapy is a common treatment option for head and neck cancer patients; however, the surrounding healthy salivary glands are often incidentally irradiated during the process. As a result, patients often experience persistent xerostomia and hyposalivation, which deceases their quality of life. Clinically, there is currently no standard of care available to restore salivary function. Repair of epithelial wounds involves cellular proliferation and establishment of polarity in order to regenerate the tissue. This process is partially mediated by protein kinase C zeta (PKCζ), an apical polarity regulator; however, its role following radiation damage is not completely understood. Using an in vivo radiation model, we show a significant decrease in active PKCζ in irradiated murine parotid glands, which correlates with increased proliferation that is sustained through 30 days post-irradiation. Additionally, salivary glands in PKCζ null mice show increased basal proliferation which radiation treatment did not further potentiate. Radiation damage also activates Jun N-terminal kinase (JNK), a proliferation-inducing mitogen-activated protein kinase normally inhibited by PKCζ. In both a PKCζ null mouse model and in primary salivary gland cell cultures treated with a PKCζ inhibitor, there was increased JNK activity and production of downstream proliferative transcripts. Collectively, these findings provide a potential molecular link by which PKCζ suppression following radiation damage promotes JNK activation and radiation-induced compensatory proliferation in the salivary gland.


Assuntos
MAP Quinase Quinase 4/metabolismo , Glândula Parótida/metabolismo , Glândula Parótida/efeitos da radiação , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antracenos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos da radiação , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Ligação Proteica , Radiação Ionizante , Radioterapia/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
3.
J Vis Exp ; (147)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31157788

RESUMO

Hyposalivation and xerostomia create chronic oral complications that decrease the quality of life in head and neck cancer patients who are treated with radiotherapy. Experimental approaches to understanding mechanisms of salivary gland dysfunction and restoration have focused on in vivo models, which are handicapped by an inability to systematically screen therapeutic candidates and efficiencies in transfection capability to manipulate specific genes. The purpose of this salivary gland organotypic culture protocol is to evaluate maximal time of culture viability and characterize cellular changes following ex vivo radiation treatment. We utilized immunofluorescent staining and confocal microscopy to determine when specific cell populations and markers are present during a 30-day culture period. In addition, cellular markers previously reported in in vivo radiation models are evaluated in cultures that are irradiated ex vivo. Moving forward, this method is an attractive platform for rapid ex vivo assessment of murine and human salivary gland tissue responses to therapeutic agents that improve salivary function.


Assuntos
Modelos Biológicos , Técnicas de Cultura de Órgãos/métodos , Glândula Parótida/crescimento & desenvolvimento , Glândula Parótida/efeitos da radiação , Glândula Submandibular/crescimento & desenvolvimento , Glândula Submandibular/efeitos da radiação , Células Acinares/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Sobrevivência de Tecidos
4.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R656-R667, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897817

RESUMO

Xerostomia and hyposalivation are debilitating side effects for patients treated with ionizing radiation for head and neck cancer. Despite technological advances, collateral damage to the salivary glands remains a significant problem for patients and severely diminishes their quality of life. During the wound healing process, restoration of junctional contacts is necessary to maintain polarity, structural integrity, and orientation cues for secretion. However, little is known about whether these structural molecules are impacted following radiation damage and more importantly, during tissue restoration. We evaluated changes in adherens junctions and cytoskeletal regulators in an injury model where mice were irradiated with 5 Gy and a restoration model where mice injected postradiation with insulin-like growth factor 1 (IGF1) are capable of restoring salivary function. Using coimmunoprecipitation, there is a decrease in epithelial (E)-cadherin bound to ß-catenin following damage that is restored to untreated levels with IGF1. Via its adaptor proteins, ß-catenin links the cadherins to the cytoskeleton and part of this regulation is mediated through Rho-associated coiled-coil containing kinase (ROCK) signaling. In our radiation model, filamentous (F)-actin organization is fragmented, and there is an induction of ROCK activity. However, a ROCK inhibitor, Y-27632, prevents E-cadherin/ß-catenin dissociation following radiation treatment. These findings illustrate that radiation induces a ROCK-dependent disruption of the cadherin-catenin complex and alters F-actin organization at stages of damage when hyposalivation is observed. Understanding the regulation of these components will be critical in the discovery of therapeutics that have the potential to restore function in polarized epithelium.


Assuntos
Citoesqueleto de Actina/efeitos da radiação , Junções Aderentes/efeitos da radiação , Glândula Parótida/efeitos da radiação , Lesões por Radiação/patologia , Xerostomia/patologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Caderinas/metabolismo , Feminino , Fator de Crescimento Insulin-Like I/administração & dosagem , Camundongos , Glândula Parótida/efeitos dos fármacos , Glândula Parótida/metabolismo , Glândula Parótida/patologia , Ligação Proteica , Doses de Radiação , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/metabolismo , Lesões por Radiação/fisiopatologia , Recuperação de Função Fisiológica , Salivação/efeitos dos fármacos , Salivação/efeitos da radiação , Xerostomia/tratamento farmacológico , Xerostomia/metabolismo , Xerostomia/fisiopatologia , beta Catenina/metabolismo , Quinases Associadas a rho/metabolismo
5.
Sci Rep ; 8(1): 6347, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679075

RESUMO

Xerostomia and salivary hypofunction often result as a consequence of radiation therapy for head and neck cancers, which are diagnosed in roughly 60,000 individuals every year in the U.S. Due to the lack of effective treatments for radiation-induced salivary hypofunction, stem cell-based therapies have been suggested to regenerate the irradiated salivary glands. Pharmacologically, restoration of salivary gland function has been accomplished in mice by administering IGF-1 shortly after radiation treatment, but it is not known if salivary stem and progenitor cells play a role. We show that radiation inactivates aPKCζ and promotes nuclear redistribution of Yap in a population of label-retaining cells in the acinar compartment of the parotid gland (PG)- which comprises a heterogeneous pool of salivary progenitors. Administration of IGF-1 post-radiation maintains activation of aPKCζ and partially rescues Yap's cellular localization in label retaining cells, while restoring salivary function. Finally, IGF-1 fails to restore saliva production in mice lacking aPKCζ, demonstrating the importance of the kinase as a potential therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Glândulas Salivares/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glândula Parótida/efeitos da radiação , Fosfoproteínas/fisiologia , Proteína Quinase C/fisiologia , Radioterapia/efeitos adversos , Saliva/efeitos da radiação , Glândulas Salivares/citologia , Células-Tronco/citologia , Xerostomia/terapia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...