Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 88: 102364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692079

RESUMO

First identified in dividing cells as revolving clusters of actin filaments, these are now understood as mitochondrially-associated actin waves that are active throughout the cell cycle. These waves are formed from the polymerization of actin onto a subset of mitochondria. Within minutes, this F-actin depolymerizes while newly formed actin filaments assemble onto neighboring mitochondria. In interphase, actin waves locally fragment the mitochondrial network, enhancing mitochondrial content mixing to maintain organelle homeostasis. In dividing cells actin waves spatially mix mitochondria in the mother cell to ensure equitable partitioning of these organelles between daughter cells. Progress has been made in understanding the consequences of actin cycling as well as the underlying molecular mechanisms, but many questions remain, and here we review these elements. Also, we draw parallels between mitochondrially-associated actin cycling and cortical actin waves. These dynamic systems highlight the remarkable plasticity of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina , Actinas , Homeostase , Mitocôndrias , Mitocôndrias/metabolismo , Actinas/metabolismo , Humanos , Animais , Citoesqueleto de Actina/metabolismo , Organelas/metabolismo
2.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358348

RESUMO

Loss-of-function mutations in VPS13C are linked to early-onset Parkinson's disease (PD). While VPS13C has been previously studied in non-neuronal cells, the neuronal role of VPS13C in disease-relevant human dopaminergic neurons has not been elucidated. Using live-cell microscopy, we investigated the role of VPS13C in regulating lysosomal dynamics and function in human iPSC-derived dopaminergic neurons. Loss of VPS13C in dopaminergic neurons disrupts lysosomal morphology and dynamics with increased inter-lysosomal contacts, leading to impaired lysosomal motility and cellular distribution, as well as defective lysosomal hydrolytic activity and acidification. We identified Rab10 as a phospho-dependent interactor of VPS13C on lysosomes and observed a decreased phospho-Rab10-mediated lysosomal stress response upon loss of VPS13C. These findings highlight an important role of VPS13C in regulating lysosomal homeostasis in human dopaminergic neurons and suggest that disruptions in Rab10-mediated lysosomal stress response contribute to disease pathogenesis in VPS13C-linked PD.


Assuntos
Neurônios Dopaminérgicos , Lisossomos , Proteínas rab de Ligação ao GTP , Humanos , Neurônios Dopaminérgicos/citologia , Homeostase , Hidrólise , Células-Tronco Pluripotentes Induzidas , Proteínas , Proteínas rab de Ligação ao GTP/genética
3.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37917024

RESUMO

Live super-resolution microscopy has allowed for new insights into recently identified mitochondria-lysosome contact sites, which mediate crosstalk between mitochondria and lysosomes, including co-regulation of Rab7 GTP hydrolysis and Drp1 GTP hydrolysis. Here, we highlight recent findings and future perspectives on this dynamic pathway and its roles in health and disease.


Assuntos
Lisossomos , Microscopia , Mitocôndrias , Guanosina Trifosfato , Membranas Mitocondriais , proteínas de unión al GTP Rab7 , Dinaminas
4.
Proc Natl Acad Sci U S A ; 120(44): e2313010120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878717

RESUMO

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Doença de Charcot-Marie-Tooth/metabolismo , Células Receptoras Sensoriais/metabolismo , Mutação , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Guanosina Trifosfato/metabolismo
5.
Neuron ; 111(23): 3775-3788.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37716354

RESUMO

Parkin-mediated mitophagy has been studied extensively, but whether mutations in parkin contribute to Parkinson's disease pathogenesis through alternative mechanisms remains unexplored. Using patient-derived dopaminergic neurons, we found that phosphorylation of parkin by Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) at Ser9 leads to activation of parkin in a neuronal-activity-dependent manner. Activated parkin ubiquitinates synaptojanin-1, facilitating its interaction with endophilin A1 and synaptic vesicle recycling. Neurons from PD patients with mutant parkin displayed defective recycling of synaptic vesicles, leading to accumulation of toxic oxidized dopamine that was attenuated by boosting endophilin A1 expression. Notably, combined heterozygous parkin and homozygous PTEN-induced kinase 1 (PINK1) mutations led to earlier disease onset compared with homozygous mutant PINK1 alone, further underscoring a PINK1-independent role for parkin in contributing to disease. Thus, this study identifies a pathway for selective activation of parkin at human dopaminergic synapses and highlights the importance of this mechanism in the pathogenesis of Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Vesículas Sinápticas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Sci Adv ; 9(29): eadh3347, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467322

RESUMO

Mutations in the E3 ubiquitin ligase parkin are the most common cause of early-onset Parkinson's disease (PD). Although parkin modulates mitochondrial and endolysosomal homeostasis during cellular stress, whether parkin regulates mitochondrial and lysosomal cross-talk under physiologic conditions remains unresolved. Using transcriptomics, metabolomics and super-resolution microscopy, we identify amino acid metabolism as a disrupted pathway in iPSC-derived dopaminergic neurons from patients with parkin PD. Compared to isogenic controls, parkin mutant neurons exhibit decreased mitochondria-lysosome contacts via destabilization of active Rab7. Subcellular metabolomics in parkin mutant neurons reveals amino acid accumulation in lysosomes and their deficiency in mitochondria. Knockdown of the Rab7 GTPase-activating protein TBC1D15 restores mitochondria-lysosome tethering and ameliorates cellular and subcellular amino acid profiles in parkin mutant neurons. Our data thus uncover a function of parkin in promoting mitochondrial and lysosomal amino acid homeostasis through stabilization of mitochondria-lysosome contacts and suggest that modulation of interorganelle contacts may serve as a potential target for ameliorating amino acid dyshomeostasis in disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Homeostase , Proteínas Ativadoras de GTPase/metabolismo
7.
Glia ; 71(9): 2180-2195, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37203250

RESUMO

central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.


Assuntos
Esclerose Múltipla , Remielinização , Camundongos , Animais , Remielinização/fisiologia , Oligodendroglia/fisiologia , Diferenciação Celular , Inflamação , Camundongos Endogâmicos C57BL
8.
J Cell Biol ; 221(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36044022

RESUMO

Lysosomes are highly dynamic organelles implicated in multiple diseases. Using live super-resolution microscopy, we found that lysosomal tethering events rarely undergo lysosomal fusion, but rather untether over time to reorganize the lysosomal network. Inter-lysosomal untethering events are driven by a mitochondrial Mid51/Fis1 complex that undergoes coupled oligomerization on the outer mitochondrial membrane. Importantly, Fis1 oligomerization mediates TBC1D15 (Rab7-GAP) mitochondrial recruitment to drive inter-lysosomal untethering via Rab7 GTP hydrolysis. Moreover, inhibiting Fis1 oligomerization by either mutant Fis1 or a Mid51 oligomerization mutant potentially associated with Parkinson's disease prevents lysosomal untethering events, resulting in misregulated lysosomal network dynamics. In contrast, dominant optic atrophy-linked mutant Mid51, which does not inhibit Mid51/Fis1 coupled oligomerization, does not disrupt downstream lysosomal dynamics. As Fis1 conversely also regulates Mid51 oligomerization, our work further highlights an oligomeric Mid51/Fis1 mitochondrial complex that mechanistically couples together both Drp1 and Rab7 GTP hydrolysis machinery at mitochondria-lysosome contact sites. These findings have significant implications for organelle networks in cellular homeostasis and human disease.


Assuntos
Lisossomos , Proteínas de Membrana , Dinâmica Mitocondrial , Proteínas Mitocondriais , Fatores de Alongamento de Peptídeos , Dinaminas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , proteínas de unión al GTP Rab7/metabolismo
9.
Mol Metab ; 60: 101468, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248787

RESUMO

OBJECTIVES: Normal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis [ALS]), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We investigated intermediary metabolism of neurons expressing familial ALS (fALS) genes and interrogated the functional consequences of glycolysis genes in fitness assays and neuronal survival. METHODS: We created a pure neuronal model system for isotopologue investigations of fuel utilization. In a yeast platform we studied the functional contributions of glycolysis genes in a growth fitness assay iafter expressing of a fALS gene. RESULTS: We find in our rodent models of fALS, a reduction in neuronal lactate production with maintained or enhanced activity of the neuronal citric acid cycle. This rewiring of metabolism is associated with normal ATP levels, bioenergetics, and redox status, thus supporting the notion that gross mitochondrial function is not compromised in neurons soon after expressing fALS genes. Genetic loss-of-function manipulation of individual steps in the glycolysis and the pentose phosphate pathway blunt the negative phenotypes seen in various fALS models. CONCLUSIONS: We propose that neurons adjust fuel utilization in the setting of neurodegenerative disease-associated alteration in mitochondrial function in a baleful manner and targeting this process can be healthful.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Trifosfato de Adenosina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Trends Neurosci ; 45(4): 312-322, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35249745

RESUMO

Neurons rely heavily on properly regulated mitochondrial and lysosomal homeostasis, with multiple neurodegenerative diseases linked to dysfunction in these two organelles. Interestingly, mitochondria-lysosome membrane contact sites have been identified as a key pathway mediating their crosstalk in neurons. Recent studies have further elucidated the regulation of mitochondria-lysosome contact dynamics via distinct tethering/untethering protein machinery. Moreover, this pathway has been shown to have additional functions in regulating organelle network dynamics and metabolite transfer between lysosomes and mitochondria. In this review, we highlight recent advances in the field of mitochondria-lysosome contact sites and their misregulation across multiple neurodegenerative disorders, which further underscore a potential role for this pathway in neuronal homeostasis and disease.


Assuntos
Doenças Neurodegenerativas , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
11.
STAR Protoc ; 3(2): 101262, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330964

RESUMO

Mitochondria-lysosome contact sites are critical for maintaining cellular homeostasis by regulating mitochondrial and lysosomal network dynamics and mediating metabolite exchange. Here, we present a protocol to quantitatively analyze the formation and tethering duration of mitochondria-lysosome contact sites by using time-lapse live confocal microscopy of LAMP1 and TOMM20. Although this protocol focuses on mammalian HeLa cells, it can be applied to other cell types for further studies on mitochondria-lysosome contact regulation and function, and elucidation of their role in human disorders. For complete details on the use and execution of this protocol, please refer to Wong et al. (2018) and Wong et al. (2019b).


Assuntos
Lisossomos , Membranas Mitocondriais , Animais , Células HeLa , Humanos , Lisossomos/metabolismo , Mamíferos , Microscopia Confocal/métodos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
12.
Nat Commun ; 12(1): 1807, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753743

RESUMO

Mitochondria-lysosome contacts are recently identified sites for mediating crosstalk between both organelles, but their role in normal and diseased human neurons remains unknown. In this study, we demonstrate that mitochondria-lysosome contacts can dynamically form in the soma, axons, and dendrites of human neurons, allowing for their bidirectional crosstalk. Parkinson's disease patient derived neurons harboring mutant GBA1 exhibited prolonged mitochondria-lysosome contacts due to defective modulation of the untethering protein TBC1D15, which mediates Rab7 GTP hydrolysis for contact untethering. This dysregulation was due to decreased GBA1 (ß-glucocerebrosidase (GCase)) lysosomal enzyme activity in patient derived neurons, and could be rescued by increasing enzyme activity with a GCase modulator. These defects resulted in disrupted mitochondrial distribution and function, and could be further rescued by TBC1D15 in Parkinson's patient derived GBA1-linked neurons. Together, our work demonstrates a potential role of mitochondria-lysosome contacts as an upstream regulator of mitochondrial function and dynamics in midbrain dopaminergic neurons in GBA1-linked Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucosilceramidase/genética , Lisossomos/genética , Mitocôndrias/genética , Mutação , Doença de Parkinson/genética , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/ultraestrutura , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Glucosilceramidase/metabolismo , Humanos , Hidrólise , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doença de Parkinson/metabolismo , Imagem com Lapso de Tempo/métodos , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
13.
Mol Neurodegener ; 16(1): 12, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632269

RESUMO

Inherited optic neuropathies are the most common mitochondrial diseases, leading to neurodegeneration involving the irreversible loss of retinal ganglion cells, optic nerve degeneration and central visual loss. Importantly, properly regulated mitochondrial dynamics are critical for maintaining cellular homeostasis, and are further regulated by MIEF1 (mitochondrial elongation factor 1) which encodes for MID51 (mitochondrial dynamics protein 51), an outer mitochondrial membrane protein that acts as an adaptor protein to regulate mitochondrial fission. However, dominant mutations in MIEF1 have not been previously linked to any human disease. Using targeted sequencing of genes involved in mitochondrial dynamics, we report the first heterozygous variants in MIEF1 linked to disease, which cause an unusual form of late-onset progressive optic neuropathy characterized by the initial loss of peripheral visual fields. Pathogenic MIEF1 variants linked to optic neuropathy do not disrupt MID51's localization to the outer mitochondrial membrane or its oligomerization, but rather, significantly disrupt mitochondrial network dynamics compared to wild-type MID51 in high spatial and temporal resolution confocal microscopy live imaging studies. Together, our study identifies dominant MIEF1 mutations as a cause for optic neuropathy and further highlights the important role of properly regulated mitochondrial dynamics in neurodegeneration.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças do Nervo Óptico/genética , Fatores de Alongamento de Peptídeos/genética , Humanos , Proteínas de Membrana/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Doenças do Nervo Óptico/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Células Ganglionares da Retina/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(32): 19266-19275, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32703809

RESUMO

Mitochondria and lysosomes are critical for cellular homeostasis, and dysfunction of both organelles has been implicated in numerous diseases. Recently, interorganelle contacts between mitochondria and lysosomes were identified and found to regulate mitochondrial dynamics. However, whether mitochondria-lysosome contacts serve additional functions by facilitating the direct transfer of metabolites or ions between the two organelles has not been elucidated. Here, using high spatial and temporal resolution live-cell microscopy, we identified a role for mitochondria-lysosome contacts in regulating mitochondrial calcium dynamics through the lysosomal calcium efflux channel, transient receptor potential mucolipin 1 (TRPML1). Lysosomal calcium release by TRPML1 promotes calcium transfer to mitochondria, which was mediated by tethering of mitochondria-lysosome contact sites. Moreover, mitochondrial calcium uptake at mitochondria-lysosome contact sites was modulated by the outer and inner mitochondrial membrane channels, voltage-dependent anion channel 1 and the mitochondrial calcium uniporter, respectively. Since loss of TRPML1 function results in the lysosomal storage disorder mucolipidosis type IV (MLIV), we examined MLIV patient fibroblasts and found both altered mitochondria-lysosome contact dynamics and defective contact-dependent mitochondrial calcium uptake. Thus, our work highlights mitochondria-lysosome contacts as key contributors to interorganelle calcium dynamics and their potential role in the pathophysiology of disorders characterized by dysfunctional mitochondria or lysosomes.


Assuntos
Cálcio/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mucolipidoses/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Transporte Biológico , Humanos , Lisossomos/genética , Mitocôndrias/genética , Dinâmica Mitocondrial , Mucolipidoses/genética , Canais de Potencial de Receptor Transitório/genética
15.
Mov Disord ; 34(10): 1406-1422, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483900

RESUMO

While current effective therapies are available for the symptomatic control of PD, treatments to halt the progressive neurodegeneration still do not exist. Loss of dopamine neurons in the SNc and dopamine terminals in the striatum drive the motor features of PD. Multiple lines of research point to several pathways which may contribute to dopaminergic neurodegeneration. These pathways include extensive axonal arborization, mitochondrial dysfunction, dopamine's biochemical properties, abnormal protein accumulation of α-synuclein, defective autophagy and lysosomal degradation, and synaptic impairment. Thus, understanding the essential features and mechanisms of dopaminergic neuronal vulnerability is a major scientific challenge and highlights an outstanding need for fostering effective therapies against neurodegeneration in PD. This article, which arose from the Movement Disorders 2018 Conference, discusses and reviews the possible mechanisms underlying neuronal vulnerability and potential therapeutic approaches in PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Animais , Axônios/metabolismo , Pareamento Cromossômico/fisiologia , Humanos
16.
Dev Cell ; 50(3): 339-354.e4, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31231042

RESUMO

Properly regulated mitochondrial networks are essential for cellular function and implicated in multiple diseases. Mitochondria undergo fission and fusion events, but the dynamics and regulation of a third event of inter-mitochondrial contact formation remain unclear. Using super-resolution imaging, we demonstrate that inter-mitochondrial contacts frequently form and play a fundamental role in mitochondrial networks by restricting mitochondrial motility. Inter-mitochondrial contact untethering events are marked and regulated by mitochondria-lysosome contacts, which are modulated by RAB7 GTP hydrolysis. Moreover, inter-mitochondrial contact formation and untethering are further regulated by Mfn1/2 and Drp1 GTP hydrolysis, respectively. Surprisingly, endoplasmic reticulum tubules are also present at inter-mitochondrial contact untethering events, in addition to mitochondrial fission and fusion events. Importantly, we find that multiple Charcot-Marie-Tooth type 2 disease-linked mutations in Mfn2 (CMT2A), RAB7 (CMT2B), and TRPV4 (CMT2C) converge on prolonged inter-mitochondrial contacts and defective mitochondrial motility, highlighting a role for inter-mitochondrial contacts in mitochondrial network regulation and disease.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Doença de Charcot-Marie-Tooth/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
17.
J Neurosci ; 39(29): 5760-5772, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097622

RESUMO

The accumulation of misfolded proteins is a common pathological feature of many neurodegenerative disorders, including synucleinopathies such as Parkinson's disease (PD), which is characterized by the presence of α-synuclein (α-syn)-containing Lewy bodies. However, although recent studies have investigated α-syn accumulation and propagation in neurons, the molecular mechanisms underlying α-syn transmission have been largely unexplored. Here, we examined a monogenic form of synucleinopathy caused by loss-of-function mutations in lysosomal ATP13A2/PARK9. These studies revealed that lysosomal exocytosis regulates intracellular levels of α-syn in human neurons. Loss of PARK9 function in patient-derived dopaminergic neurons disrupted lysosomal Ca2+ homeostasis, reduced lysosomal Ca2+ storage, increased cytosolic Ca2+, and impaired lysosomal exocytosis. Importantly, this dysfunction in lysosomal exocytosis impaired α-syn secretion from both axons and soma, promoting α-syn accumulation. However, activation of the lysosomal Ca2+ channel transient receptor potential mucolipin 1 (TRPML1) was sufficient to upregulate lysosomal exocytosis, rescue defective α-syn secretion, and prevent α-syn accumulation. Together, these results suggest that intracellular α-syn levels are regulated by lysosomal exocytosis in human dopaminergic neurons and may represent a potential therapeutic target for PD and other synucleinopathies.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the second most common neurodegenerative disease linked to the accumulation of α-synuclein (α-syn) in patient neurons. However, it is unclear what the mechanism might be. Here, we demonstrate a novel role for lysosomal exocytosis in clearing intracellular α-syn and show that impairment of this pathway by mutations in the PD-linked gene ATP13A2/PARK9 contributes to α-syn accumulation in human dopaminergic neurons. Importantly, upregulating lysosomal exocytosis by increasing lysosomal Ca2+ levels was sufficient to rescue defective α-syn secretion and accumulation in patient neurons. These studies identify lysosomal exocytosis as a potential therapeutic target in diseases characterized by the accumulation of α-syn, including PD.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Neurônios Dopaminérgicos/metabolismo , Exocitose/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , alfa-Sinucleína/toxicidade , Linhagem Celular Tumoral , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
18.
Trends Cell Biol ; 29(6): 500-513, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30898429

RESUMO

Mitochondrial and lysosomal function are intricately related and critical for maintaining cellular homeostasis, as highlighted by multiple diseases linked to dysfunction of both organelles. Recent work using high-resolution microscopy demonstrates the dynamic formation of inter-organelle membrane contact sites between mitochondria and lysosomes, allowing for their direct interaction in a pathway distinct from mitophagy or lysosomal degradation of mitochondrial-derived vesicles. Mitochondria-lysosome contact site tethering is mechanistically regulated by mitochondrial proteins promoting Rab7 GTP hydrolysis, and allows for the bidirectional crosstalk between mitochondria and lysosomes and the regulation of their organelle network dynamics, including mitochondrial fission. In this review, we summarize recent advances in mitochondria-lysosome contact site regulation and function, and discuss their potential roles in cellular homeostasis and various human diseases.


Assuntos
Homeostase , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Humanos
19.
Trends Neurosci ; 42(2): 140-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509690

RESUMO

The discovery of genetic forms of Parkinson's disease (PD) has highlighted the importance of the autophagy/lysosomal and mitochondrial/oxidative stress pathways in disease pathogenesis. However, recently identified PD-linked genes, including DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1), have also highlighted disruptions in synaptic vesicle endocytosis (SVE) as a significant contributor to disease pathogenesis. Additionally, the roles of other PD genes such as LRRK2, PRKN, and VPS35 in the regulation of SVE are beginning to emerge. Here we discuss the recent work on the contribution of dysfunctional SVE to midbrain dopaminergic neurons' selective vulnerability and highlight pathways that demonstrate the interplay of synaptic, mitochondrial, and lysosomal dysfunction in the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Endocitose , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Autofagia , Dopamina/metabolismo , Predisposição Genética para Doença , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Estresse Oxidativo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
20.
Nature ; 554(7692): 382-386, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29364868

RESUMO

Both mitochondria and lysosomes are essential for maintaining cellular homeostasis, and dysfunction of both organelles has been observed in multiple diseases. Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network, which drives cellular metabolism. Lysosomes similarly undergo constant dynamic regulation by the RAB7 GTPase, which cycles from an active GTP-bound state into an inactive GDP-bound state upon GTP hydrolysis. Here we have identified the formation and regulation of mitochondria-lysosome membrane contact sites using electron microscopy, structured illumination microscopy and high spatial and temporal resolution confocal live cell imaging. Mitochondria-lysosome contacts formed dynamically in healthy untreated cells and were distinct from damaged mitochondria that were targeted into lysosomes for degradation. Contact formation was promoted by active GTP-bound lysosomal RAB7, and contact untethering was mediated by recruitment of the RAB7 GTPase-activating protein TBC1D15 to mitochondria by FIS1 to drive RAB7 GTP hydrolysis and thereby release contacts. Functionally, lysosomal contacts mark sites of mitochondrial fission, allowing regulation of mitochondrial networks by lysosomes, whereas conversely, mitochondrial contacts regulate lysosomal RAB7 hydrolysis via TBC1D15. Mitochondria-lysosome contacts thus allow bidirectional regulation of mitochondrial and lysosomal dynamics, and may explain the dysfunction observed in both organelles in various human diseases.


Assuntos
Lisossomos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas rab de Ligação ao GTP/metabolismo , Sítios de Ligação , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...