Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 14(2): 148-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481551

RESUMO

Background and aim: The purpose of the study was to investigate the anti-hyperglycemic effect of extra virgin sacha inchi oil (EVSIO) and its possible mechanisms and actions against pancreatic ß-cell death and dysfunction in type 2 diabetic (T2D) rats. Experimental procedure: T2D rats were induced with a high-fat diet and low-dose of streptozotocin. The rats were then treated for 5 weeks with EVSIO (0.5, 1, and 2 ml/kg), or pioglitazone. Biochemical and histopathological studies, oxidative and inflammatory markers, and expression of apoptotic-related proteins were then evaluated. Results: EVSIO treatment exhibited a dose-dependent reduction of fasting blood glucose, area under the curve of glucose, total cholesterol, and triglyceride levels in the diabetic rats, while improved pancreatic ß-function was demonstrated by increasing pancreatic and serum insulin levels. EVSIO treatment effectively lowered atrophic pancreatic islets and reduced the level of serum and pancreatic MDA in the diabetic rats. In addition to serum and pancreatic GPx activities in the diabetic rats, EVSIO also augmented serum SOD. Increased levels of NF-κB, TNF-α and IL-6 present in the diabetic rats were greatly reduced by EVSIO treatment. Furthermore, EVSIO revealed an anti-apoptotic effect on the diabetic rat pancreas by upregulating Bcl-2, and downregulating Bax and cleaved caspase-3 protein expression. Conclusion: The overall study results demonstrated the potential anti-hyperglycemic effect of EVSIO in the diabetic rats. The beneficial effects of EVSIO may be attributed to its ability to improve pancreatic ß-cell function and ameliorate ß-cell apoptosis by inhibiting oxidative stress and inflammatory cytokines.

2.
Environ Sci Pollut Res Int ; 30(59): 123286-123308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981611

RESUMO

This study investigated the anti-hyperglycemic action of mango seed kernel extract (MKE) and various mechanisms involved in its actions to improve pancreatic ß cells and hepatic carbohydrate metabolism in diabetic rats. An intraperitoneal injection of 60 mg/kg of streptozotocin (STZ) followed by 30 consecutive days of treatment with MKE (250, 500, and 1000 mg/kg body weight) was used to establish a study group of diabetic rats. Using liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) for identification, 26 chemical compounds were found in MKE and the high-performance liquid chromatography (HPLC) analysis of the MKE also revealed the existence of mangiferin, gallic acid, and quercetin. The results confirmed that in each diabetes-affected rat, MKE mitigated the heightened levels of fasting blood glucose, diabetic symptoms, glucose intolerance, total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C). As demonstrated by a remarkable increment in serum and pancreatic insulin, the diabetic pancreatic ß cell function was potentiated by treating with MKE. The effect of MKE on diabetic pancreatic apoptosis clearly reduced the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells, which was related to diminished levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and Bax and an increase in Bcl-xL protein expression. Furthermore, diabetes-induced liver damage was clearly ameliorated along with a notable reduction in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and abnormal liver histology. By enhancing anti-oxidant superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, MKE alleviated diabetes-induced pancreatic and liver oxidative damage, as demonstrated by diminished levels of malondialdehyde. In minimizing the expression levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase-1 proteins in the diabetic liver, MKE also enhanced glycogen content and hexokinase activity. Collectively, these findings indicate that by suppressing oxidative and inflammatory processes, MKE exerts a potent anti-hyperglycemic activity in diabetic rats which serve to protect pancreatic ß cell apoptosis, enhance their function, and improve hepatic glucose metabolism.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Células Secretoras de Insulina , Mangifera , Ratos , Animais , Glucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Espectrometria de Massas em Tandem , Glicemia/análise , Antioxidantes/metabolismo , Hiperglicemia/metabolismo , Fígado , Apoptose , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Hipoglicemiantes/farmacologia , Metabolismo dos Carboidratos , Colesterol/metabolismo
3.
Prev Nutr Food Sci ; 28(1): 30-42, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37066030

RESUMO

This study aimed to evaluate the role of sacha inchi oil (SI) in alleviating hepatic insulin resistance and improving glucose metabolism by inhibiting oxidative stress and inflammation in a rat model of type 2 diabetes. This model was established by providing a high-fat diet and streptozotocin to the rats, thereby inducing diabetes. The diabetic rats were treated orally with 0.5, 1, and 2 mL/kg body weight (b.w.) of SI or 30 mg/kg b.w. of pioglitazone daily for 5 weeks. Blood and hepatic tissues were used for insulin sensitivity, carbohydrate metabolism, oxidative stress, and inflammatory status assessment. Treatment with SI attenuated hyperglycemia and insulin resistance indices, and improved hepatic histopathological alterations in the diabetic rats in a dose-dependent manner, which is correlated with the decreased serum levels of the liver enzymes, alanine transaminase and aspartate transaminase. SI significantly diminished the hepatic oxidative status of the diabetic rats by inhibiting malondialdehyde and enhancing the antioxidant superoxide dismutase, catalase, and glutathione peroxidase activities. Moreover, pro-inflammatory cytokine levels, including tumor necrosis factor-α and interleukin-6, in the liver of the diabetic rats were significantly decreased by the SI. Furthermore, SI treatment enhanced the hepatic insulin sensitivity of the diabetic rats, as shown by the increased insulin receptor substrate-1 and p-Akt protein expression, decreased phosphoenolpyruvate carboxykinase-1 and glucose-6-phospatase protein expression, and increased hepatic glycogen content. Overall, these findings suggest that SI exerts a potential hepatic insulin-sensitizing effect and an improvement in glucose metabolism in the type 2 diabetic rats, at least in part through enhancing insulin signaling, antioxidant defense, and inhibiting inflammation.

4.
J Food Biochem ; 46(12): e14444, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165434

RESUMO

Diabetes mellitus is a metabolic disease affecting various organs, including the spleen and is characterized by chronic hyperglycemia. Oxidative and inflammatory stress are key mediators in the development of spleen damage caused by diabetes. This study aimed to examine the splenoprotective effect of hesperidin and the mechanisms underlying its capacity to reduce oxidative stress and inflammation-mediated spleen damage in diabetes. The diabetic rats used in this study were induced with a 65 mg per kg body weight of streptozotocin. This was followed by 4 weeks of continuous daily dosage of hesperidin treatment at 100 mg/kg body weight. The results showed that hesperidin improved spleen weight and histopathological alterations in the diabetic rats. The hesperidin-treated diabetic group showed a marked induction of SOD and GPx enzymes and moderated malondialdehyde level. This was in addition to an obvious decrease in the levels of TNF-α and NF-ᴋB in the diabetic rat spleen. Through a remarkable upregulation in Bcl-xL and downregulation in Bax and cleaved caspase-3 proteins, hesperidin supplementation rescued splenic cell apoptosis in the diabetic rats. These findings demonstrate the effectiveness of hesperidin in helping regulate Bcl-2 family proteins and inhibiting the oxidative stress and inflammatory status of hyperglycemia-mediated spleen apoptosis. PRACTICAL APPLICATIONS: Diabetes-related spleen damage increases immune dysfunction, which often results in the heightened risks of infection, morbidity and mortality in diabetic patients. In this work, hesperidin was used in the treatment of rats with diabetes-induced splenic damage. The results were highly encouraging with hesperidin consistently presenting beneficial antioxidant and anti-inflammatory qualities and splenoprotective effect. Research outcomes support the notion that hesperidin treatment could be considered a good strategy for the prevention of diabetic complications in the spleen.


Assuntos
Diabetes Mellitus Experimental , Hesperidina , Hiperglicemia , Ratos , Animais , Hesperidina/farmacologia , Baço , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hiperglicemia/complicações , Peso Corporal
5.
Life Sci ; 235: 116858, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31505195

RESUMO

AIMS: The current study was conducted to investigate the potential protective effects of hesperidin and its possible mechanisms of action on pancreatic ß-cells in diabetes. MAIN METHODS: Male Sprague Dawley rats were made diabetic using 65 mg/kg intraperitoneal injection of streptozotocin, and then administered daily with 100 mg/kg of hesperidin over 4 weeks. On conclusion of the experiment, blood and pancreatic tissue were collected to determine the function of ß-cells, apoptosis, oxidative stress, ER stress, and inflammation. KEY FINDINGS: Treatment of diabetic rats with hesperidin, significantly decreased fasting blood glucose and food intake, along with increased body weight, serum and pancreatic insulin levels, and pancreatic-duodenal homeobox-1 (PDX-1) protein expression. The beneficial roles of hesperidin on diabetic pancreatic ß-cells exhibited an increment in antioxidant SOD and GPx activities, and a decrement in nitrotyrosine as well as malondialdehyde (MDA) levels. Additionally, the elevated concentration of TNF-α and expressions of ER stress maker GRP78 and CHOP proteins in the pancreas of diabetic rats were significantly diminished by hesperidin treatment. Furthermore, hesperidin effectively modulated expressions of apoptosis-regulatory proteins in diabetic rat pancreas, as revealed by upregulating anti-apoptotic Bcl-xL; with a concomitant downregulating pro-apoptotic Bax, cleaved caspase-3, and inhibiting the activation of DNA repair protein poly (ADP-ribose) polymerase (PARP). SIGNIFICANCE: Collectively, these findings suggest that hesperidin may have the potential to protect pancreatic ß-cells and improve their function by suppressing oxidative and ER stress, along with activating its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hesperidina/farmacologia , Células Secretoras de Insulina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Homeodomínio/biossíntese , Inflamação , Insulina/sangue , Insulina/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Superóxido Dismutase/metabolismo , Transativadores/biossíntese , Fator de Transcrição CHOP/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...