Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 16: 241-250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362510

RESUMO

Net energy (NE) enables the prediction of more accurate feed energy values by taking into account the heat increment which is approximately 25% of apparent metabolizable energy (AME) in poultry. Nevertheless, application of NE in poultry industry has not been practiced widely. To predict the NE values of broiler diets, 23 diets were prepared by using 13 major ingredients (wheat, corn, paddy rice, broken rice, cassava pellets, full-fat soybean, soybean meal, canola meal, animal protein, rice bran, wheat bran, palm kernel meal and palm kernel oil). The diets were formulated in order to meet the birds' requirements and get a wide range of chemical compositions (on DM basis; 33.6% to 55.3% for starch; 20.8% to 28.4% for CP, 2.7% to 10.6% for ether extract [EE] and 7.0% to 17.2% for NDF), with low correlations between these nutrients and low correlations between the inclusion levels of ingredients allowing for the calculation of robust prediction equations of energy values of diets or ingredients. These diets were fed to Ross 308 broilers raised in 12 open-circuit respiratory chambers from 18 to 23 d of age (4 birds per cage) and growth performance, diet AME content and heat production were measured, and dietary NE values were calculated. The trial was conducted on a weekly basis with 12 diets measured each week (1 per chamber), 1 of the 23 diets (reference diet) being measured each week. Each diet was tested at least 8 times. In total, 235 energy balance data values were available for the final calculations. Growth performance, AME (15.3 MJ/kg DM on average) and AME/GE (79.4% on average) values were as expected. The NE/AME value averaged 76.6% and was negatively influenced by CP and NDF and positively by EE in connection with efficiencies of AME provided by CP, EE and starch for NE of 73%, 87% and 81%, respectively. The best prediction equation was: NE = (0.815 × AME) - (0.026 × CP) + (0.020 × EE) - (0.024 × NDF) with NE and AME as MJ/kg DM, and CP, EE and NDF as % of DM. The NE prediction equations from this study agree with other recently reported equations in poultry and are suitable for both ingredients and complete feeds.

2.
Int J Food Sci ; 2022: 9269968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458205

RESUMO

Background and Aims: Hyperlipidemia is a risk factor for cardiovascular diseases. This study is aimed at investigating the effects of consuming omega-3-rich pork lard on the serum lipid profile and gut microbiome of the mice model. Methods and Results: We divided 23 C57BL/6NJ males (16-week-old) into 3 groups, and each group received either a control diet, a high-fat diet of coconut oil (coconut oil), or a high-fat diet of omega-3-rich pork lard (omega lard) for 28 days. Thereafter, fasting serum lipids and fecal microbiomes were analyzed. The serum cholesterol, triglyceride, and LDL levels of the omega lard-treated group were significantly reduced compared to the coconut oil-treated group (P < 0.05). However, the microbiome analysis revealed a significant increase in the abundance of Lachnospiraceae in the omega lard-treated group compared to the coconut oil-treated group (P < 0.05). Furthermore, Spearman's correlation analysis revealed that the increased serum lipid content was positively correlated with the abundance of Bacteroidaceae (P < 0.05) and negatively correlated with the abundance of Lachnospiraceae (P < 0.05). Conclusions: These findings suggested that omega-3-rich pork lard altered the serum lipid profile and gut microbiome in the mice model. Practical Application. The excellent protection offered by omega-3-rich pork lard against hyperlipidemia indicated that pork lard could be used as alternative cooking oil for health-conscious individuals. It could also be introduced as a functional ingredient for patients with hyperlipidemia.

3.
J Oleo Sci ; 71(7): 1039-1049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781256

RESUMO

Hyperlipidemia is a condition where the blood shows an elevated level of lipid, such as cholesterol and triglyceride. It is considered a risk factor for all coronary artery death globally. Association of microbiome with non-communicable diseases (NCDs) including hyperlipidemia has been reportedly associated. In this study, we hypothesize that the change in microbiome is correlated to the change in serum lipid level, which resulted by increasing dietary fat consumption. The 32 male, 14-week-old, C57BL/6N were divided into 4 groups, each group received control diet, 10%, 20%, and 40% kcal fat diet prepared from purified pork lard, respectively for 28 days. Fasting serum lipids and fecal microbiome were then analyzed. The group of animals assigned to 40% kcal fat showed significantly increased serum cholesterol, LDL, and HDL (p < 0.05). Microbiome analysis revealed the abundance of Muribaculaceae and Saccharimonadaceae were significantly decreased (p < 0.05). On the contrary, the abundance of Clostridia_UCG014, Akkermansiaceae, Bacteroidaceae, Oscillospiraceae, and Erysipelotrichaceae were significantly increased (p < 0.05). Spearman correlation indicated that the abundance of Akkermansiaceae and Bacteroidaceae were positively associated with the increased of serum cholesterol and LDL (p < 0.05), while the abundance of Muribaculaceae, Clostridia_UCG-014, and Saccharimonadaceae were negatively associated (p < 0.05). These results suggest that dietary fat have ability to manipulated microbiome with relative to elevation of serum lipid profile.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Gorduras na Dieta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
4.
J Virol Methods ; 243: 83-91, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159667

RESUMO

H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions.


Assuntos
Aptâmeros de Nucleotídeos , Imunoensaio/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Aves Domésticas , Tunísia
5.
J Biotechnol ; 214: 158-68, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26403588

RESUMO

Organic dry bean production systems have received increasing interest in many regions of the US, including Minnesota. Thus, improving biological N2 fixation would be highly beneficial for organic crop production. To date, only limited work has been done to select efficient N2-fixing rhizobia for organic dry bean production. In this study, soil samples from 25 organic fields in Minnesota, with a previous cropping history of dry beans, soybeans or both, were collected during May to July 2012. Genetic diversity of indigenous dry bean-rhizobia (511 isolates) was determined by using horizontal, fluorophore-enhanced, repetitive, extragenic, and palindromic-PCR (HFERP) DNA fingerprinting and isolates were classified as belonging to 58 different genotypes. The more abundant rhizobia isolated from bean nodules comprised 35.6% of the population. None of the isolates were identical to commonly-used commercial strains used in the U.S., including Rhizobium tropici CIAT899. Seventeen predominant genotypes were shown to represent two main species, Rhizobium leguminosarum bv. phaseoli (67.1%) and Rhizobium etli (30.2%). One of the indigenous strains, orgK9, displayed efficient N2-fixation and competitive ability relative to the commercial strains tested. The lack of large numbers of indigenous dry bean-rhizobia at most study sites will be useful to avoid competition problems between inoculant strains and indigenous rhizobia. This will allow inoculation with highly effective N2-fixing rhizobia, thus resulting in improved crop productivity. Our results highlight the existence of site-specific rhizobial genotypes in different organic fields and identify strains that may prove useful as novel inoculants for organic dry bean production systems.


Assuntos
DNA Bacteriano/genética , Agricultura Orgânica , Phaseolus/microbiologia , Rhizobium/genética , Variação Genética/genética , Fixação de Nitrogênio , Microbiologia do Solo
6.
Virus Genes ; 49(3): 428-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262289

RESUMO

In Thailand, surveillance for the highly pathogenic avian influenza virus H5N1 (HPAI-H5N1) has revealed high prevalence of the virus in quail in live-bird markets. This study monitored avian influenza viruses (AIVs) in quail farms in an area at high risk for HPAI-H5N1 over a 12-month period from 2009 to 2010. One-step real-time RT-PCR (rRT-PCR) results showed that 1.18 % of swab samples (24/2,040) were AIV positive. Among the rRT-PCR positive samples, three samples were identified as subtype H7N1. One Thai H7N1 virus designated "A/quail/Thailand/CU-J2882/2009 (H7N1)" was subjected to whole genome sequencing and genetic characterization. Phylogenetic analysis showed that the HA gene of the Thai H7N1 virus groups with those of the H7 Eurasian viruses. Interestingly, the NA gene of the virus was found to be closely related to those of the HPAI-H5N1 viruses from Vietnam and Thailand. This study constitutes the first report on AIV H7N1 in Thailand. Our results suggest the possibility of genetic reassortment between AIV-H7NX and HPAI-H5N1 in quail. The HA cleavage site of the Thai H7N1 virus contains no multiple amino acid insertions, suggesting low pathogenic characteristics for this virus.


Assuntos
Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/virologia , Codorniz/virologia , Animais , Análise por Conglomerados , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/classificação , Dados de Sequência Molecular , Neuraminidase/genética , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Tailândia , Proteínas Virais/genética
7.
J Clin Microbiol ; 51(1): 46-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077124

RESUMO

Triple reassortant influenza A viruses (IAVs) of swine, particularly the North American H3N2 subtype, circulate in swine herds and may reassort and result in the emergence of novel zoonotic strains. Current diagnostic tools rely on isolation of the viruses, followed by serotyping by hemagglutination or genome sequencing, both of which can be expensive and time-consuming. Thus, novel subtype-specific ligands and methods are needed for rapid testing and subtyping of IAVs in the field. To address this need, we selected DNA aptamers against the recombinant HA protein from swine IAV H3 cluster IV using systematic evolution of ligands by exponential enrichment (SELEX). Four candidate aptamers (HA68, HA7, HA2a, and HA2b) were identified and characterized. The dissociation constants (K(d)) of aptamers HA68, HA7, HA2a, and HA2b against recombinant H3 protein were 7.1, 22.3, 16.0, and 3.7 nM, respectively. The binding site of HA68 to H3 was identified to be between nucleotide residues 8 and 40. All aptamers inhibited H3 hemagglutination. HA68 was highly specific to all four lineages within the North American H3N2 subtype. Further, the other three aptamers specifically identified live viruses belonging to the phylogenetic clusters I, II/III, and IV especially the virus that closely related to the recent H3N2 variant (H3N2v). Aptamer HA68 was also able to bind and detect H3N2v isolated from recent human cases. In conclusion, we provide subtype-specific aptamers against H3N2 IAVs of swine that can now be used in rapid detection and typing protocols for field applications.


Assuntos
Aptâmeros de Nucleotídeos , Testes de Inibição da Hemaglutinação/métodos , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Medicina Veterinária/métodos , Virologia/métodos , Animais , Aptâmeros de Nucleotídeos/isolamento & purificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Técnica de Seleção de Aptâmeros , Suínos
8.
Arch Virol ; 157(6): 1123-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367500

RESUMO

Monitoring of influenza A virus (IAV) was conducted in wild bird species in central Thailand. Four IAV subtype H12N1 strains were isolated from a watercock (order Gruiformes, family Rallidae) (n = 1) and lesser whistling ducks (order Anseriformes, family Anatidae) (n = 3). All H12N1 viruses were characterized by whole-genome sequencing. Phylogenetic analysis of all eight genes of the Thai H12N1 viruses indicated that they are most closely related to the Eurasian strains. Analysis of the HA gene revealed the strains to be of low pathogenicity. This study is the first to report the circulation of IAV subtype H12N1 in Thailand and to describe the genetic characteristics of H12N1 in Eurasia. Moreover, the genetic information obtained on H12N1 has contributed a new Eurasian strain of H12N1 to the GenBank database.


Assuntos
Animais Selvagens/virologia , Anseriformes/virologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Vírus da Influenza A/classificação , Dados de Sequência Molecular , Filogenia , Tailândia , Proteínas Virais/genética
9.
Virol J ; 8: 131, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21418614

RESUMO

: A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM) in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n = 2) and H4N9 (n = 1) were isolated from healthy Muscovy ducks. All three viruses were characterized by whole genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that the viruses clustered in the Eurasian lineage of influenza A viruses. Genetic analysis showed that H4N6 and H4N9 viruses display low pathogenic avian influenza characteristics. The HA cleavage site and receptor binding sites were conserved and resembled to LPAI viruses. This study is the first to report isolation of H4N6 and H4N9 viruses from birds in LBM in Thailand and shows the genetic diversity of the viruses circulating in the LBM. In addition, co-infection of H4N6 and H4N9 in the same Muscovy duck was observed.


Assuntos
Patos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Patos/virologia , Vírus da Influenza A/classificação , Influenza Aviária/epidemiologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Tailândia/epidemiologia
10.
Virus Genes ; 43(1): 1-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21442301

RESUMO

For the past 10 years, endemic swine influenza H1 viruses in Thailand have been characterized as reassortants of swine virus genes from swine influenza viruses (SIV) in US and European pigs. Here the authors report the emergence of a novel reassorted H1N1 (rH1N1) virus consisted of human, avian, and swine virus genes from the pandemic H1N1 2009 (pH1N1) virus with a neuraminidase (NA) gene from a Thai swine H1N1 (ThH1N1) isolate. The rH1N1 virus was detected in nursery pigs during a respiratory disease outbreak in central Thailand in early 2010. The rH1N1 virus was repeatedly isolated from infected pigs, suggesting that it can transmit efficiently among the pig population. The appearance of rH1N1 virus in the field occurred within months of the introduction of pH1N1 virus into the Thai swine population in late 2009. The finding highlights the role of pig in generating newly reassorted influenza A viruses and also the significance of continuing disease surveillance and genetic characterization of SIV in pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Análise por Conglomerados , Evolução Molecular , Dados de Sequência Molecular , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Suínos , Tailândia , Proteínas Virais/genética
11.
Virol J ; 7: 233, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20843374

RESUMO

In January and November 2008, outbreaks of avian influenza have been reported in 4 provinces of Thailand. Eight Influenza A H5N1 viruses were recovered from these 2008 AI outbreaks and comprehensively characterized and analyzed for nucleotide identity, genetic relatedness, virulence determinants, and possible sites of reassortment. The results show that the 2008 H5N1 viruses displayed genetic drift characteristics (less than 3% genetic differences), as commonly found in influenza A viruses. Based on phylogenetic analysis, clade 1 viruses in Thailand were divided into 3 distinct branches (subclades 1, 1.1 and 1.2). Six out of 8 H5N1 isolates have been identified as reassorted H5N1 viruses, while other isolates belong to an original H5N1 clade. These viruses have undergone inter-lineage reassortment between subclades 1.1 and 1.2 and thus represent new reassorted 2008 H5N1 viruses. The reassorted viruses have acquired gene segments from H5N1, subclade 1.1 (PA, HA, NP and M) and subclade 1.2 (PB2, PB1, NA and NS) in Thailand. Bootscan analysis of concatenated whole genome sequences of the 2008 H5N1 viruses supported the reassortment sites between subclade 1.1 and 1.2 viruses. Based on estimating of the time of the most recent common ancestors of the 2008 H5N1 viruses, the potential point of genetic reassortment of the viruses could be traced back to 2006. Genetic analysis of the 2008 H5N1 viruses has shown that most virulence determinants in all 8 genes of the viruses have remained unchanged. In summary, two predominant H5N1 lineages were circulating in 2008. The original CUK2-like lineage mainly circulated in central Thailand and the reassorted lineage (subclades 1.1 and 1.2) predominantly circulated in lower-north Thailand. To prevent new reassortment, emphasis should be put on prevention of H5N1 viruses circulating in high risk areas. In addition, surveillance and whole genome sequencing of H5N1 viruses should be routinely performed for monitoring the genetic drift of the virus and new reassorted strains, especially in light of potential reassortment between avian and mammalian H5N1 viruses.


Assuntos
Surtos de Doenças , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Vírus Reordenados/genética , Animais , Aves , Análise por Conglomerados , Genótipo , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Aves Domésticas , RNA Viral/genética , Vírus Reordenados/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Tailândia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...