Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0266422, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700688

RESUMO

Surveillance of avian influenza viruses (AIV) in wild water bird populations is important for early warning to protect poultry from incursions of high-pathogenicity (HP) AIV. Access to individual water birds is difficult and restricted and limits sampling depth. Here, we focused on environmental samples such as surface water, sediments, and environmentally deposited fresh avian feces as matrices for AIV detection. Enrichment of viral particles by ultrafiltration of 10-L surface water samples using Rexeed-25-A devices was validated using a bacteriophage ϕ6 internal control system, and AIV detection was attempted using real-time RT-PCR and virus isolation. While validation runs suggested an average enrichment of about 60-fold, lower values of 10 to 15 were observed for field water samples. In total 25/36 (60%) of water samples and 18/36 (50%) of corresponding sediment samples tested AIV positive. Samples were obtained from shallow water bodies in habitats with large numbers of waterfowl during an HPAIV epizootic. Although AIV RNA was detected in a substantial percentage of samples virus isolation failed. Virus loads in samples often were too low to allow further sub- and pathotyping. Similar results were obtained with environmentally deposited avian feces. Moreover, the spectrum of viruses detected by these active surveillance methods did not fully mirror an ongoing HPAIV epizootic among waterfowl as detected by passive surveillance, which, in terms of sensitivity, remains unsurpassed. IMPORTANCE Avian influenza viruses (AIV) have a wide host range in the avian metapopulation and, occasionally, transmission to humans also occurs. Surface water plays a particularly important role in the epidemiology of AIV, as the natural virus reservoir is found in aquatic wild birds. Environmental matrices comprising surface water, sediments, and avian fecal matter deposited in the environment were examined for their usefulness in AIV surveillance. Despite virus enrichment efforts, environmental samples regularly revealed very low virus loads, which hampered further sub- and pathotyping. Passive surveillance based on oral and cloacal swabs of diseased and dead wild birds remained unsurpassed with respect to sensitivity.

2.
J Fish Dis ; 45(9): 1259-1266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648620

RESUMO

The spread of viral diseases in eels is suggested to severely affect the European eel (Anguilla anguilla) panmictic population. The European Commission has initiated the Eel Recovery Plan (Council Regulation No. 1100/2007) to try to return the European eel stock to more sustainable levels within that measures eel restocking. However, scientific evidence evaluating the efficacy of stocking remains scarce. In addition, knowledge about the impact and contribution of eel stocking on the distribution of infectious diseases is insufficient. In this study, we aimed to investigate virus infections in batches of eels intended for restocking. We analysed samples of glass eels from certified fisheries and farmed European eels from different aquaculture farms. All analysed eels were purchased within a North Rhine Westphalian conservation program. Via a combination of cell culture and qPCR-based techniques, we detected infections of glass eels with the rhabdovirus Eel Virus European X and anguillid herpesvirus 1 infections in farmed eels (10-15 cm).


Assuntos
Anguilla , Doenças dos Peixes , Rhabdoviridae , Viroses , Animais , Aquicultura , Viroses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...