Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Contam Hydrol ; 219: 28-39, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361116

RESUMO

Source strength functions (SSF), defined as contaminant mass discharge or flux-averaged concentration from dense nonaqueous phase liquid (DNAPL) source zones as a function of time, provide a quantitative model of DNAPL source-zone behavior. Such information is useful for calibration of screening-level models to assist with site management decisions. We investigate the use of historic data collected during long-term monitoring (LTM) activities at a site in Rhode Island to predict the SSF based on temporal mass discharge measurements at a fixed location, as well as SSF estimation using mass discharge measurements at a fixed time from three spatially distributed control planes. Mass discharge based on LTM data decreased from ~300 g/day in 1996 to ~70 g/day in 2012 at a control plane downgradient of the suspected DNAPL source zone, and indicates an overall decline of ~80% in 16 years. These measurements were compared to current mass discharge measurements across three spatially distributed control planes. Results indicate that mass discharge increased in the downgradient direction, and was ~6 g/day, ~37 g/day, and ~400 g/day at near, intermediate, and far distances from the suspected source zone, respectively. This behavior was expected given the decreasing trend observed in the LTM data at a fixed location. These two data sets were compared using travel time as a means to plot the data sets on a common axis. The similarity between the two data sets gives greater confidence to the use of this combined data set for site-specific SSF estimation relative to either the sole use of LTM or spatially distributed data sets.


Assuntos
Poluentes Químicos da Água , Monitoramento Ambiental , Humanos
2.
J Contam Hydrol ; 177-178: 167-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25965419

RESUMO

The uncertainty of mass discharge measurements associated with point-scale measurement techniques was investigated by deriving analytical solutions for the mass discharge coefficient of variation for two simplified, conceptual models. In the first case, a depth-averaged domain was assumed, consisting of one-dimensional groundwater flow perpendicular to a one-dimensional control plane of uniformly spaced sampling points. The contaminant flux along the control plane was assumed to be normally distributed. The second case consisted of one-dimensional groundwater flow perpendicular to a two-dimensional control plane of uniformly spaced sampling points. The contaminant flux in this case was assumed to be distributed according to a bivariate normal distribution. The center point for the flux distributions in both cases was allowed to vary in the domain of the control plane as a uniform random variable. Simplified equations for the uncertainty were investigated to facilitate screening-level evaluations of uncertainty as a function of sampling network design. Results were used to express uncertainty as a function of the length of the control plane and number of wells, or alternatively as a function of the sample spacing. Uncertainty was also expressed as a function of a new dimensionless parameter, Ω, defined as the ratio of the maximum local flux to the product of mass discharge and sample density. Expressing uncertainty as a function of Ω provided a convenient means to demonstrate the relationship between uncertainty, the magnitude of a local hot spot, magnitude of mass discharge, distribution of the contaminant across the control plane, and the sampling density.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Poluição da Água/análise , Água Subterrânea , Incerteza , Poluentes Químicos da Água/análise , Poços de Água
3.
J Contam Hydrol ; 156: 16-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240102

RESUMO

Mass discharge measurements at contaminated sites have been used to assist with site management decisions, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Pumping methods can be sub-divided based on the pumping procedures used into sequential, concurrent, and tandem circulating well categories. Recent work has investigated the uncertainty of point measurement methods, and to a lesser extent, pumping methods. However, the focus of this study was a direct comparison of uncertainty between the various pumping method approaches that have been used, as well as a comparison of uncertainty between pumping and point measurement methods. Mass discharge measurement error was investigated using a Monte Carlo modeling analysis as a function of the contaminant plume position and width, and as a function of the pumping conditions used in the different pumping tests. Results indicated that for the conditions investigated, uncertainty in mass discharge estimates based on pumping methods was 1.3 to 16 times less than point measurement method uncertainty, and that a sequential pumping approach resulted in 5 to 12 times less uncertainty than the concurrent pumping or tandem circulating well approaches. Uncertainty was also investigated as a function of the plume width relative to well spacing. For a given well spacing, uncertainty decreased for all methods as the plume width increased, and comparable levels of uncertainty between point measurement and pumping methods were obtained when three wells were distributed across the plume. A hybrid pumping technique in which alternate wells were pumped concurrently in two separate campaigns yielded similar uncertainty to the sequential pumping approach. This suggests that the hybrid approach can be used to capitalize on the advantages of sequential pumping yet minimize the overall test duration.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Incerteza , Modelos Teóricos , Método de Monte Carlo , Qualidade da Água
4.
Ground Water ; 49(2): 172-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21449091

RESUMO

Research has been conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of polymer modified nZVI and hematite in fine grained sands under an applied electrical gradient under different physical and chemical conditions. Results indicated transport of polymer modified nZVI and hematite can be accomplished by electrophoresis, with rates found to be much higher than diffusion alone and comparable to those predicted by electrokinetic theory. This study indicates there is potential for this method to deliver polymer modified nZVI into contaminated zones within fine grained sands for the purpose of remediation.


Assuntos
Eletroforese/métodos , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanopartículas Metálicas/química , Compostos Férricos/química , Porosidade
5.
Ground Water ; 49(5): 727-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21299555

RESUMO

Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/isolamento & purificação , Delaware , Água Subterrânea/química , Solubilidade , Movimentos da Água
6.
J Contam Hydrol ; 102(1-2): 140-53, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18632182

RESUMO

Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.


Assuntos
Recuperação e Remediação Ambiental , Movimentos da Água , Poluentes Químicos da Água/análise , Incerteza , Utah
7.
J Contam Hydrol ; 82(1-2): 1-22, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16233935

RESUMO

This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.


Assuntos
Poluentes do Solo/isolamento & purificação , Tensoativos/química , Tetracloroetileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , 2-Propanol/química , Cloreto de Cálcio/química , Micelas , Solubilidade , Succinatos/química , Fatores de Tempo
8.
J Contam Hydrol ; 81(1-4): 125-47, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16213060

RESUMO

Aquifer heterogeneity (structure) and NAPL distribution (architecture) are described based on tracer data. An inverse modelling approach that estimates the hydraulic structure and NAPL architecture based on a Lagrangian stochastic model where the hydraulic structure is described by one or more populations of lognormally distributed travel times and the NAPL architecture is selected from eight possible assumed distributions. Optimization of the model parameters for each tested realization is based on the minimization of the sum of the square residuals between the log of measured tracer data and model predictions for the same temporal observation. For a given NAPL architecture the error is reduced with each added population. Model selection was based on a fitness which penalized models for increasing complexity. The technique is demonstrated under a range of hydrologic and contaminant settings using data from three small field-scale tracer tests: the first implementation at an LNAPL site using a line-drive flow pattern, the second at a DNAPL site with an inverted five-spot flow pattern, and the third at the same DNAPL site using a vertical circulation flow pattern. The Lagrangian model was capable of accurately duplicating experimentally derived tracer breakthrough curves, with a correlation coefficient of 0.97 or better. Furthermore, the model estimate of the NAPL volume is similar to the estimates based on moment analysis of field data.


Assuntos
Simulação por Computador , Modelos Teóricos , Movimentos da Água , Processos Estocásticos
9.
J Contam Hydrol ; 81(1-4): 148-66, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16185785

RESUMO

A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hydraulic "structure" and non-aqueous phase liquid (NAPL) "architecture" have been described in a companion paper (Enfield, C.G., Wood, A.L., Espinoza, F.P., Brooks, M.C., Annable, M., Rao, P.S.C., this issue. Design of aquifer remediation systems: (1) describing hydraulic structure and NAPL architecture using tracers. J. Contam. Hydrol.). The previously defined functions were used along with the properties of the remedial fluids to describe remedial performance. There are two objectives for this paper. First, is to show that a simple analytic element model can be used to give a reasonable estimate of system performance. This is accomplished by comparing forecast performance to observed performance. The second objective is to display the model output in terms of change in mass flux and mass removal as a function of pore volumes of remedial fluid injected. The modelling results suggest that short term benefits are obtained and related to mass reduction at the sites where the model was tested.


Assuntos
Água Doce , Modelos Teóricos , Poluentes Químicos da Água , Purificação da Água , Poluentes do Solo , Solventes , Processos Estocásticos , Movimentos da Água
10.
J Contam Hydrol ; 69(3-4): 281-97, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028395

RESUMO

A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.


Assuntos
Etanol/química , Poluentes do Solo/isolamento & purificação , Solventes/química , Poluentes da Água/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Solubilidade , Tetracloroetileno/isolamento & purificação
11.
Environ Sci Technol ; 37(21): 5040-9, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14620836

RESUMO

The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL, where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatmenttrain approach for complete site restoration, which combines an active in situ dense nonaqueous-phase liquid (DNAPL) removal technology, cosolvent extraction, with a passive enhanced in situ bioremediation technology, reductive dechlorination. During the in situ cosolvent extraction test, approximately 34 kL of 95% ethanol/5% water (v:v) was flushed through the contaminated zone, which removed approximately 60% of the estimated PCE mass. Approximately 2.72 kL of ethanol was left in the subsurface, which provided electron donorfor enhancement of biological processes in the source zone and downgradient areas. Quarterly groundwater monitoring for over 3 yr showed decreasing concentrations of PCE in the source zone from initial values of 4-350 microM to less than 150 microM during the last sampling event. Initially there was little to no daughter product formation in the source zone, but after 3 yr, measured concentrations were 242 microM for cis-dichloroethylene (cis-DCE), 13 microM for vinyl chloride, and 0.43 microM for ethene. In conjunction with the production of dissolved methane and hydrogen and the removal of sulfate, these measurements indicate that in situ biotransformations were enhanced in areas exposed to the residual ethanol. First-order rate constants calculated from concentration data for individual wells ranged from -0.63 to -2.14 yr(-1) for PCE removal and from 0.88 to 2.39 yr(-1) for cis-DCE formation. First-order rate constants based on the change in total mass estimated from contour plots of the groundwater concentration data were 0.75 yr(-1) for cis-DCE, -0.50 yr(-1) for PCE, and -0.33 yr(-1) for ethanol. Although these attenuation rate constants include additional processes, such as sorption, dispersion, and advection, they provide an indication of the overall system dynamics. Evaluation of the groundwater data from the former dry cleaner site showed that cosolvent flushing systems can be designed and utilized to aid in the enhancement of biodegradation processes at DNAPL sites.


Assuntos
Carcinógenos/isolamento & purificação , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Tetracloroetileno/isolamento & purificação , Poluentes da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Cinética , Solventes
12.
J Environ Qual ; 32(3): 957-65, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12809296

RESUMO

Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.


Assuntos
Modelos Estatísticos , Poluentes do Solo/análise , Tensoativos/química , Emulsões , Permeabilidade , Solubilidade , Abastecimento de Água
13.
Environ Sci Technol ; 37(24): 5829-34, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14717202

RESUMO

The limitations associated with conventional pump and treat technology have generated interest in using enhanced in-situ flushing as an alternative for remediating source zones contaminated with immiscible liquid. This research investigates the effectiveness of cyclodextrin as a solubility-enhancement agent to enhance the removal of tetrachloroethene (PCE) from a physically isolated section of an aquifer. An important component of this project was the implementation of reagent recovery and reuse. This field experiment presented the rare opportunity, under strict regulatory guidance, to inject PCE into the surficial aquifer cell created with two sets of sheet piles driven into an underlying clay unit. The well-controlled conditions specific to this experiment allowed quantification of mass balances, which is problematic for many contaminated field sites. The fact that mass balances can be obtained provides the ability to determine remediation effectiveness with unusual accuracy for a field project. The saturated zone within the test cell was flushed with a 15 wt % cyclodextrin solution. The cyclodextrin solution increased the aqueous concentration of PCE in the extraction-well effluent to as much as 22 times the concentrations obtained during the water flush conducted prior to the complexing sugar flush (CSF). The seven pore-volume CSF removed the equivalent of approximately 33 L of PCE from the subsurface. This equates to 48% of the total initial mass, based on the volume of PCE present prior to the CSF (68.6 L). Conversely, the seven pore-volume water flush conducted prior to the CSF removed the equivalent of 2.7 L of PCE. The use of cyclodextrin as a flushing agent, especially in a recycling configuration, appears to hold promise for successful remediation of chlorinated-solvent-contaminated source zones.


Assuntos
Conservação dos Recursos Naturais , Ciclodextrinas/química , Solventes/química , Tetracloroetileno/química , Purificação da Água/métodos , Silicatos de Alumínio , Argila , Solubilidade , Solventes/isolamento & purificação , Tetracloroetileno/isolamento & purificação , Movimentos da Água
14.
J Contam Hydrol ; 59(3-4): 187-210, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12487413

RESUMO

The partitioning tracer technique for dense nonaqueous phase liquid (DNAPL) characterization was evaluated in an isolated test cell, in which controlled releases of perchloroethylene (PCE) had occurred. Four partitioning tracer tests were conducted, two using an inverted, double five-spot pumping pattern, and two using vertical circulation wells. Two of the four tests were conducted prior to remedial activities, and two were conducted after. Each test was conducted as a "blind test" where researchers conducting the partitioning tracer tests had no knowledge of the volume, method of release, nor resulting spatial distribution of DNAPL. Multiple partitioning tracers were used in each test, and the DNAPL volume estimates varied significantly within each test based on the different partitioning tracers. The tracers with large partitioning coefficients generally predicted a smaller volume of PCE than that expected based on the actual release volume. However, these predictions were made for low DNAPL saturations (average saturation was approximately 0.003), under conditions near the limits of the method's application. Furthermore, there were several factors that may have hindered prediction accuracy, including tracer degradation and remedial fluid interference.


Assuntos
Poluição Ambiental , Tetracloroetileno/química , Poluentes Químicos da Água , Álcoois/química , Água Doce , Solo
15.
J Hazard Mater ; 95(1-2): 125-35, 2002 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-12409243

RESUMO

Hydrophobic dyes have been used to visually distinguish dense non-aqueous phase liquid (DNAPL) contaminants from background aqueous phases and soils. The objective of this study was to evaluate the effects of a dyed DNAPL, 0.5 g Oil-Red-O/l of PCE, on the physical properties of remedial solutions: water, co-solvents (50, 70, and 90% (v/v) ethanol), and surfactants (4% (w) sodium dihexyl sulfosuccinate). This study compared the densities, viscosities, and interfacial tensions (IFTs) of the remedial solutions in contact with both dyed and undyed PCE. The presence of the dye in PCE substantially alters the IFTs of water and ethanol solutions, while there is no apparent difference in IFTs of surfactant solutions. The remedial solutions saturated with PCE showed higher viscosities and densities than pure remedial solutions. Solutions with high ethanol content exhibited the largest increases in liquid density. Because physical properties affect the flow of the remedial solutions in porous media, experiments using dyed DNAPLs should assess the influence of dyes on fluid and interfacial properties prior to remediation process analysis.


Assuntos
Compostos Azo , Corantes , Tetracloroetileno/análise , Tricloroetileno/análise , Fenômenos Químicos , Físico-Química , Monitoramento Ambiental , Solubilidade , Solventes , Tensão Superficial , Tensoativos , Viscosidade , Movimentos da Água , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 36(23): 5238-44, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12523443

RESUMO

Dense nonaqueous phase liquid (DNAPL) contamination is a major environmental problem. Cosolvent flooding is proposed as a remedial alternative to water flooding. The efficacy of cosolvent flooding is a function of the degree of contact between the injected remedial fluid and the resident DNAPL Poor contact may result from remedial fluids traveling in preferential flow paths which bypass trapped DNAPL Thus, the motivation for this study was to use the preferential flow of air in porous media to enhance contact between the injected cosolvent and resident DNAPL The study evaluated concurrent injection of cosolvent and air to improve the spatial extent of DNAPL removal in porous media. A 70% ethanol/30% water (v/v) cosolvent was injected simultaneously with air into a micromodel containing residual tetrachloroethylene (PCE). Double drainage displacement was observed as a dominant DNAPL removal mechanism in the initial period of the cosolvent-air flooding (i.e., gas displaced PCE that displaced water). The residual PCE residing in the preferential paths traversed by air was readily displaced. In addition to this initial PCE mobilization, air flowing through the preferential flow paths displaced cosolvent from these paths into other flow paths and facilitated dissolution of PCE.


Assuntos
Modelos Teóricos , Poluentes do Solo/análise , Solventes/química , Poluentes Químicos da Água/análise , Poluição da Água/prevenção & controle , Movimentos do Ar , Porosidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...