Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(16): 9628-9637, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423429

RESUMO

Each year approximately 1.3 billion tons of food is either wasted or lost. One of the most wasted foods in the world is bread. The ability to reuse wasted food in another area of need, such as water scarcity, would provide a tremendous sustainable outcome. To address water scarcity, many areas of the world are now implementing desalination. One desalination technology that could benefit from food waste reuse is capacitive deionization (CDI). CDI has emerged as a powerful desalination technology that essentially only requires a pair of electrodes and a low-voltage power supply. Developing freestanding carbon electrodes from food waste could lower the overall cost of CDI systems and the environmental and economic impact from food waste. We created freestanding CDI electrodes from bread. The electrodes possessed a hierarchical pore structure that enabled both high salt adsorption capacity and one of the highest reported values for hydraulic permeability to date in a flow-through CDI system. We also developed a sustainable technique for electrode fabrication that does not require the use of common laboratory equipment and could be deployed in decentralized locations and developing countries with low-financial resources.

2.
RSC Adv ; 9(9): 4735-4743, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514616

RESUMO

Through the benefit of billions of years of evolution, biology has developed tremendous strategies on how to co-exist in high salinity and water scarce environments. Biologically-inspired abiotic systems are becoming a central pillar in how we respond to critical grand challenges that accompany exponential population growth, uncontrolled climate change and the harsh reality that 96.5% of the water on the planet is saltwater. One fascinating biologic adaptation to saltwater is the growth of mangrove trees in brackish swamps and along the coasts. Through a process of salt exclusion, the mangrove maintains a near freshwater flow from roots to leaves to survive. One abiotic approach to water desalination is capacitive deionization, which aims to desalinate low-salinity water sources at energy costs below current technologies, such as reverse osmosis and thermal distillation. In this work, we use one-step carbonization of a plant with developed aerenchyma tissue to enable highly-permeable, freestanding flow-through capacitive deionization electrodes. We show that carbonized aerenchyma from red mangrove roots reduces the resistance to water flow through electrodes by 65-fold relative to carbonized common woody biomass. We then demonstrate the practical use of the intact carbonized red mangrove roots as electrodes in a flow-through capacitive deionization system. These findings have implications in a range of fields including water desalination, bioinspired materials, and plant functionality.

3.
PLoS One ; 9(11): e113264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409326

RESUMO

Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas/fisiopatologia , Pressão Intracraniana , Fenômenos Biomecânicos , Lesões Encefálicas/etiologia , Simulação por Computador , Feminino , Análise de Elementos Finitos , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...