Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512948

RESUMO

Mosquitoes of the genera Aedes, Anopheles and Culex vector a wide range of pathogens seriously affecting humans and livestock on a global scale. Over-reliance on insecticides and repellents has driven research into alternative, naturally-derived compounds to fulfil the same objectives. Steam distilled extracts of four plants with strong, yet attractive, volatile profiles were initially assessed for repellency in a dual-port olfactometer using Aedes aegypti as the model species. Picea sitchensis was found to be the most repellent, proving comparable to leading products when applied at 100% (p = 1.000). Key components of conifer-derived volatile profiles were then screened via electroantennography before those components eliciting an electrophysiological response were assayed individually in the olfactometer; according to WHO protocol. The most promising 5 were selected for reductive analyses to produce an optimised semiochemical blend. This combination, and a further two variations of the blend, were then progressed to a multi-species analysis using the BG-test whereby bite-attempt frequency on hands was assessed under different repellent treatments; assays were compared between Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Efficacy was found against all three species, although it was found that Ae. aegypti was the most susceptible to the repellent, with An. gambiae being the least. Here, a novel, naturally-derived blend is presented with weak spatial repellency, as confirmed in laboratory assays. Further work will be required to assess the full extent of the potential of the products, both in terms of field application and species screening; however, the success of the products developed demonstrate that plant metabolites have great capacity for use in the repellent sector; both to improve upon known compounds and to reduce the usage of toxic products currently on the market.


Assuntos
Aedes , Anopheles , Culex , Culicidae , Repelentes de Insetos , Inseticidas , Humanos , Animais , Mosquitos Vetores , Extratos Vegetais/farmacologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia
2.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415377

RESUMO

Olfactory systems are indispensable for insects as they, including Western Flower Thrips (Frankliniella occidentalis), use olfactory cues for ovipositing and feeding. F. occidentalis use odorant binding proteins (OBPs) to transport semiochemicals to odorant receptors to induce a behavioural response from the sensillum lymph of the insect's antennae. This study identifies four OBPs of F. occidentalis and analyses their expression at three stages of growth: larvae, adult males and adult females. Further, it investigates the presence of conserved motifs and their phylogenetic relationship to other insect species. Moreover, FoccOBP3 was in silico characterized to analyse its structure along with molecular docking and molecular dynamics simulations to understand its binding with semiochemicals of F. occidentalis. Molecular docking revealed the interactions of methyl isonicotinate, p-anisaldehyde and (S)-(-)-verbenone with FoccOBP3. Moreover, molecular dynamics simulations showed bonding stability of these ligands with FoccOBP3, and field trials validated that Lurem TR (commercial product) and p-anisaldehyde had greater attraction as compared to (S)-(-)-verbenone, given the compound's binding with FoccOBP3. The current study helps in understanding the tertiary structure and interaction of FoccOBP3 with lures using computational and field data and will help in the identification of novel lures of insects in the future, given the importance of binding with OBPs.Communicated by Ramaswamy H. Sarma.

3.
J Fungi (Basel) ; 9(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367536

RESUMO

Wireworm, the larval stages of click beetles, are a serious pest of tubers, brassicas and other important commercial crops throughout the northern hemisphere. No effective control agent has been developed specifically for them, and many of the pesticides marketed as having secondary application against them have been withdrawn from EU and Asian markets. Metarhizium brunneum, an effective entomopathogenic fungus, and its derived volatile metabolites are known to be effective plant biostimulants and plant protectants, although field efficacy has yet to be validated. Field validation of a combined M. brunneum and derived VOC treatments was conducted in Wales, UK, to assess the effects of each as a wireworm control agent and biostimulant. Plots were treated with Tri-Soil (Trichoderma atroviridae), M. brunneum, 1-octen-3-ol or 3-octanone, or combinations thereof. Treatments were applied subsurface during potato seeding (n = 52), and potatoes were harvested at the end of the growing season. Each potato was weighed individually and scored for levels of wireworm damage. Applications of both the VOCs and the M. brunneum individually were found to significantly decrease wireworm burden (p < 0.001). Combinations of M. brunneum and 3-octanone were also found to significantly decrease wireworm damage (p < 0.001), while no effect on yield was reported, resulting in an increased saleable mass over controls (p < 0.001). Herein, we present a novel 'stimulate and deter' wireworm control strategy that can be used to significantly enhance saleable potato yields and control wireworm populations, even under high pest pressure densities.

4.
J Invertebr Pathol ; 198: 107920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023891

RESUMO

The brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum. Concentrations of 1 - 1000 ppm of 3-octanone were first assessed in laboratory choice assays to determine behavioural response. Repellent activity was found at 1000 ppm whereas attractance was found for the lower concentrations of 1, 10 and 100 ppm. These three concentrations of 3-octanone were carried forward in field evaluations to assess potential for use in "lure and kill" strategies. The highest concentration (100 ppm) was the most attractive to the snails but also the most lethal. Even at the lowest concentration this compound proved toxic effects making 3-octanone an excellent candidate for the development as a snail attractant and molluscicide.


Assuntos
Moluscocidas , Compostos Orgânicos Voláteis , Animais , Cetonas , Moluscocidas/farmacologia , Agricultura
5.
J Fungi (Basel) ; 8(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36294617

RESUMO

Metarhizium brunneum is a highly effective entomopathogenic fungus that also functions as a plant biostimulant. It can act as both an endophyte and rhizosphere colonizer; however, the mechanisms driving biostimulation are multifactorial. In this work, oilseed rape (Brassica napus) seeds were grown in composts treated with different concentrations of M. brunneum strains ARSEF 4556 or V275, or the M. brunneum-derived volatile organic compounds 1-octen-3-ol and 3-octanone. Biostimulation efficacy was found to be strongly dose dependent. Concentrations of 1 × 106 conidia g-1 compost were found to be most effective for the M. brunneum, whereas dosages of 1 µL 100 g-1 compost were found to be efficacious for the volatiles. These optimized doses were assessed individually and in combined formulations with a hydrogel against oilseed rape (Brassica napus), sitka spruce (Picea sitchensis), maize (Zea mays) and strawberry (Fragaria annanassa). Both volatile compounds were highly effective biostimulants and were found to increase in biostimulatory efficiency when combined with M. brunneum conidia. Hydrogels were not found to interact with the growth process and may offer avenues for novel formulation technologies. This study demonstrates that Metarhizium-derived volatile organic compounds are actively involved in plant growth promotion and have potential for use in novel formulations to increase the growth of a wide range of commercially relevant crops.

6.
J Med Entomol ; 59(5): 1732-1740, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35938709

RESUMO

Aedes aegypti mosquitoes are capable of vectoring a wide range of diseases including dengue, yellow fever, and Zika viruses, with approximately half of the worlds' population at risk from such diseases. Development of combined predator-parasite treatments for the control of larvae consistently demonstrates increased efficacy over single-agent treatments, however, the mechanism behind the interaction remains unknown. Treatments using the natural predator Toxorhynchites brevipalpis and the entomopathogenic fungus Metarhizium brunneum were applied in the laboratory against Ae. aegypti larvae as both individual and combined treatments to determine the levels of interaction between control strategies. Parallel experiments involved the removal of larvae from test arenas at set intervals during the course of the trial to record whole body caspase and phenoloxidase activities. This was measured via luminometric assay to measure larval stress factors underlying the interactions. Combined Metarhizium and Toxorhynchites treatments were seen to drastically reduce lethal times as compared to individual treatments. This was accompanied by increased phenoloxidase and caspase activities in combination treatments after 18 h (p < 0.001). The sharp increases in caspase and phenoloxidase activities suggest that combined treatments act to increase stress factor responses in the larvae that result in rapid mortality above that of either control agent individually. This work concludes that the underlying mechanism for increased lethality in combined parasite-predator treatments may be related to additive stress factors induced within the target host larvae.


Assuntos
Aedes , Culicidae , Hypocreales , Metarhizium , Infecção por Zika virus , Zika virus , Aedes/fisiologia , Animais , Caspases , Larva/fisiologia , Metarhizium/fisiologia , Monofenol Mono-Oxigenase , Controle de Mosquitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...