Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(27): 5620-31, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23782312

RESUMO

Surface adsorbed organics are ubiquitous components of inorganic tropospheric aerosols and have the potential to alter aerosol chemical and physical properties. To assess the impact of adsorbed organics on water uptake by inorganic substrates, we used diffuse reflectance infrared spectroscopy to compared water adsorption isotherms for uncoated NaCl and α-Al2O3 samples, samples containing a monolayer of adsorbed catechol, and adsorbed catechol samples following ozonolysis. Adsorption of gaseous catechol on to the inorganic substrates produced vibrational features indicating physisorption on NaCl and displacement of surface hydroxyl groups forming binuclear bidentate catecholate on α-Al2O3, with surface concentrations of 2-3 × 10(18) molecules m(-2). Subsequent heterogeneous ozonolysis produced muconic acid at a rate 4-5 times faster on NaCl compared to α-Al2O3, with predicted atmospheric lifetimes of 4.3 and 18 h, respectively, assuming a tropospheric ozone concentration of 40 ppb. Water adsorption isotherms for all NaCl samples were indistinguishable within experimental uncertainty, indicating that these organic monolayers had negligible impact on coadsorbed water surface concentrations for these systems. α-Al2O3-catechol samples exhibited dramatically less water uptake compared to uncoated α-Al2O3, while oxidation of surface adsorbed catechol had no effect on the extent of water uptake. For both substrates, adsorbed organics increased the relative abundance of "ice-like" versus "liquid-like" water, with the effect larger for catechol than oxidized ozonolysis products. These results highlight the importance of aerosol substrate in understanding the heterogeneous ozonolysis of adsorbed polyphenols and suggest such coatings may impair ice nucleation by aluminosilicate mineral aerosol.


Assuntos
Óxido de Alumínio/química , Catecóis/química , Ozônio/química , Cloreto de Sódio/química , Água/química , Adsorção , Aerossóis/química , Estrutura Molecular , Teoria Quântica , Propriedades de Superfície
2.
Phys Chem Chem Phys ; 12(36): 10766-74, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20623042

RESUMO

Surface-adsorbed organics can alter the chemistry of tropospheric aerosols thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed catechol with nitrogen dioxide. The dark heterogeneous reaction of NO(2) with NaCl-adsorbed catechol produced 4-nitrocatechol, 1,2-benzoquinone, and the ring-cleaved product muconic acid, with product yields of 88%, 8%, and 4% at relative humidity (RH) < 2%, respectively. The reaction was first-order with respect to both catechol and NO(2). The reactive uptake coefficient for NO(2) + NaCl-adsorbed catechol increased from 3 x 10(-6) at <2% RH to 7 x 10(-6) at 30% RH. These reactions were more than two orders of magnitude more reactive than NaCl without adsorbed catechol. The 4-nitrocatechol product yield was enhanced on NaF, while NaBr-adsorbed catechol produced considerably more 1,2-benzoquinone and muconic acid. This substrate effect is discussed in terms of each substrate's ability to polarize the phenol group and hinder hydrogen atom abstraction from intermediate o-semiquinone radicals. These dark heterogeneous reactions may alter the UV-visible absorbing properties of tropospheric aerosols and may also contribute as a dark source of NO(2)(-)/HONO. These results contrast prior observations which found pure catechol thin films unreactive with NO(2), highlighting the need to specifically consider substrate and matrix effects in laboratory systems.


Assuntos
Catecóis/química , Dióxido de Nitrogênio/química , Adsorção , Aerossóis , Minerais/química , Cloreto de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...