Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053500

RESUMO

To ensure the accuracy of radiation delivery to patients in a 1.5 T MRI-linac, the implementation of quality assurance (QA) devices compatible with MR technology is essential. The OCTAVIUS 4D MR, made by PTW (Freiburg, Germany) is designed to ensure consistent and ideal alignment of its detectors with the direction of each beam segment. This study focuses on investigating the fundamental characteristics of the detector response for the OCTAVIUS Detector (OD) 1500 MR and OCTAVIUS 1600MR when used in the MR-compatible OCTAVIUS 4D. Characteristics examined included short-term reproducibility, dose linearity, field size dependency, monitor unit (MU) rate dependency, dose-per-pulse dependency, and angular dependency. The evaluation of OD 1500 MR also involved measuring 25 clinical treatment plans across diverse target sizes and anatomical sites, including the liver/pancreas, rectum, prostate, lungs, and lymph nodes. One plan was measured with the standard setup and with a 5 cm left offset. The OD 1600MR was not available for these measurements. The capability of the OD 1500 MR to identify potential errors was assessed by introducing a MU and positional shift within the software. The results demonstrated no significant differences in short-term reproducibility (<0.2%), dose linearity (<1%), field size dependency (<0.7% for field sizes larger than 5cm × 5cm), MU rate dependency (<0.8%), dose-per-pulse dependency (<0.4%) and angular dependency (standard deviation <0.5%). All tests of clinical plans were successfully completed. The OD 1500 MR demonstrated compatibility with the standard 95% pass rate when employing a global 3%/3mm gamma criterion, and a 90% pass rate using a global 2%/2mm gamma criterion. The detector demonstrated the capacity to measure treatment plans with a 5 cm left offset. With the standard parameters, the gamma test was sensitive to position errors but required an addition tests of mean/median dose or point dose in order to detect small dose difference.

2.
J Appl Clin Med Phys ; 25(1): e14180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38011008

RESUMO

For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.


Assuntos
Aceleradores de Partículas , Dosímetros de Radiação , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Radiometria/métodos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos
3.
J Appl Clin Med Phys ; 22(8): 45-59, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275176

RESUMO

PURPOSE: To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI-linac. METHODS: Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines. Adaptations were necessary because of the atypical maximum field size (57.4 × 22 cm), FFF beam, the non-rotating collimator, the absence of a light field, the presence of the 1.5 T magnetic field, restricted access to equipment within the bore, fixed vertical and lateral table position, and the need for MR image to MV treatment alignment. The performance specifications were set for stereotactic body radiotherapy (SBRT). RESULTS: The new procedure was performed similarly to that of a conventional kilovoltage x-ray (kV) image guided radiation therapy (IGRT) linac. Results were acquired for the first Unity system. CONCLUSIONS: A comprehensive set of tests was developed, described and implemented for the MRI-linac. The MRI-linac met safety requirements for patients and operators. The system delivered radiation very accurately with, for example a gantry rotation locus of isocenter of radius 0.38 mm and an average MLC absolute positional error of 0.29 mm, consistent with use for SBRT. Specifications for clinical introduction were met.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
4.
Radiother Oncol ; 134: 50-54, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31005224

RESUMO

Online adaptive radiotherapy using the 1.5 Tesla MR-linac is feasible for SBRT (5 × 7 Gy) of pelvic lymph node oligometastases. The workflow allows full online planning based on daily anatomy. Session duration is less than 60 min. Quality assurance tests, including independent 3D dose calculations and film measurements were passed.


Assuntos
Linfonodos/efeitos da radiação , Neoplasias da Próstata/radioterapia , Radiocirurgia/instrumentação , Estudos de Viabilidade , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática , Imageamento por Ressonância Magnética/métodos , Masculino , Aceleradores de Partículas , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos
5.
J Appl Clin Med Phys ; 18(6): 177-182, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29082594

RESUMO

A volumetric modulated arc therapy (VMAT) approach to total body irradiation (TBI) has recently been introduced at our institution. The planning target volume (PTV) is divided into separate sub-volumes, each being treated with 2 arcs with their own isocentre. Pre-treatment quality assurance of beams is performed on a Sun Nuclear ArcCHECK diode array. Measurement of junction regions between VMAT arcs with separate isocentres has previously been performed with point dose ionization chamber measurements, or with films. Translations of the ArcCHECK with respect to a known distance between the adjacent isocentres of two arcs, which are repeated with the ArcCHECK in an inverted position, allows the recording of a junction dose map. A 3%/3 mm global gamma analysis (10% threshold) pass rate for arc junctions were comparable to their component arcs. Dose maps of junction regions between adjacent arcs with different isocentres can be readily measured on a Sun Nuclear ArcCHECK diode array.


Assuntos
Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Irradiação Corporal Total , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...