Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(2): 029702, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207509
2.
Phys Rev Lett ; 114(1): 016405, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615487

RESUMO

We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

3.
Phys Chem Chem Phys ; 16(39): 21119-34, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25017305

RESUMO

The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide (ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, where n = 1-12 formula units. The computational cost of each search is dominated by the effort to evaluate each sample point on the energy landscape and the number of required sample points. The effect of changing the balance between these two factors on the success of the search is investigated. The choice of sample points will also affect the number of required data points and therefore the efficiency of the search. Monte Carlo based global optimisation routines (evolutionary and stochastic quenching algorithms) within a new software package, viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-screening on the DFT energy landscape. Pre-screening includes structural relaxation to minimise a cheaper energy function - based on interatomic potentials - and is found to improve significantly the search efficiency, and typically reduces the number of DFT calculations required to locate the local minima by more than an order of magnitude. Although the choice of functional form is important, the approach is robust to small changes to the interatomic potential parameters. The computational cost of initial DFT calculations of each structure is reduced by employing Gaussian smearing to the electronic energy levels. Larger (KF)n nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences between the HOMO and LUMO energies, for all the compounds apart from KF, are in the visible region of the optical spectrum (2-3 eV); KF lies deep in the UV region at 5 eV and shows little variation. Extrapolating the electron affinities found for the clusters with respect to size results in the qualitatively correct work functions for the respective bulk materials.

4.
Phys Chem Chem Phys ; 16(39): 21098-105, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24969266

RESUMO

Electron-hole separation for novel composite systems comprised of secondary building units formed from different compounds is investigated with the aim of finding suitable materials for photocatalysis. Pure and mixed SOD and LTA superlattices of (ZnO)12 and (GaN)12, single-shell bubbles are constructed as well as core@shell single component frameworks composed of larger (ZnO)48 and (GaN)48 bubbles with each containing one smaller bubble. Enthalpies of formation for all systems are comparable with fullerenes. Hole and electron separation is achieved most efficiently by the edge sharing framework composed of (GaN)12@(ZnO)48 double bubbles, with the hole localised on the nitrogen within the smaller bubbles and the excited electron on zinc within the larger cages.

5.
J Chem Phys ; 139(12): 124101, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24089744

RESUMO

We present an embedded cluster model to treat one-dimensional nanostructures, using a hybrid quantum mechanical/molecular mechanical (QM/MM) approach. A segment of the nanowire (circa 50 atoms) is treated at a QM level of theory, using density functional theory (DFT) with a hybrid exchange-correlation functional. This segment is then embedded in a further length of wire, treated at an MM level of theory. The interaction between the QM and MM regions is provided by an embedding potential located at the interface. Point charges are placed beyond the ends of the wire segment in order to reproduce the Madelung potential of the infinite system. We test our model on the ideal system of a CdS linear chain, benchmarking our results against calculations performed on a periodic system using a plane-wave DFT approach, with electron exchange and correlation treated at the same level of approximation in both methods. We perform our tests on pure CdS and, importantly, the system containing a single In or Cu impurity. We find excellent agreement in the determined electronic structure using the two approaches, validating our embedded cluster model. As the hybrid QM/MM model avoids spurious interactions between charged defects, it will be of benefit to the analysis of the role of defects in nanowire materials, which is currently a major challenge using a plane-wave DFT approach. Other advantages of the hybrid QM/MM approach over plane-wave DFT include the ability to calculate ionization energies with an absolute reference and access to high levels of theory for the QM region which are not incorporated in most plane-wave codes. Our results concur with available experimental data.

6.
Philos Trans A Math Phys Eng Sci ; 368(1923): 3379-456, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20566517

RESUMO

We review recent developments and applications of computational modelling techniques in the field of materials for energy technologies including hydrogen production and storage, energy storage and conversion, and light absorption and emission. In addition, we present new work on an Sn2TiO4 photocatalyst containing an Sn(II) lone pair, new interatomic potential models for SrTiO3 and GaN, an exploration of defects in the kesterite/stannite-structured solar cell absorber Cu2ZnSnS4, and report details of the incorporation of hydrogen into Ag2O and Cu2O. Special attention is paid to the modelling of nanostructured systems, including ceria (CeO2, mixed Ce(x)O(y) and Ce2O3) and group 13 sesquioxides. We consider applications based on both interatomic potential and electronic structure methodologies; and we illustrate the increasingly quantitative and predictive nature of modelling in this field.


Assuntos
Fontes Geradoras de Energia , Dióxido de Carbono/química , Simulação por Computador , Eletroquímica/métodos , Desenho de Equipamento , Hidrogênio/química , Luz , Nitrogênio/química , Óxidos/química , Fotoquímica/métodos , Software , Estrôncio/química , Tecnologia/tendências , Titânio/química , Água/química
7.
Phys Chem Chem Phys ; 11(17): 3176-85, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19370213

RESUMO

We report a general method of constructing microporous, cubic frameworks from eight different high symmetry small clusters of ZnO, which were previously predicted via the application of an evolutionary algorithm. Using interatomic potentials, the lattice energies of the structures formed are computed. We analyse the relative stabilities within particular subsets of these periodic structures, and show that frameworks constructed from edge-sharing units of clusters with the T(h) point group are predicted to be much more stable than those with T(d). Our results have general implications for the nanostructures of systems whose bulk structures are based on tetrahedral coordination.

8.
Phys Chem Chem Phys ; 11(17): 3186-200, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19370214

RESUMO

We report the results of density functional theory calculations on nanostructures of SiC, including single clusters, cluster dimers, and nanoporous cluster frameworks. Our results show that at the nanoscale, there is significant charge transfer of 2.5|e| from Si to C atoms, which results in the adoption of the same structural motifs for nanoparticles of SiC that occur for ZnO, with clusters of T(h), T(d), and O symmetry. Experimental support for our models is provided by comparison of optical gaps and ionisation potentials. With the exception of the (SiC)(28) cluster, the T(h) or T(d) nanoparticles can bind into kinetically stable agglomerates on either tetragonal or hexagonal faces, with tetragonal binding energetically preferred for larger nanoclusters, which enables the construction of cubic nanoporous frameworks of varying porosities. Frameworks composed of larger clusters are softer; with bulk moduli of ca. 20 GPa while frameworks assembled from smaller clusters tend to be harder. The electronic structure of all frameworks can be analysed in terms of the adopted short-range order of the clusters, we predict that frameworks containing topological features similar to the rock-salt phase are metallic in nature.

9.
Phys Chem Chem Phys ; 10(14): 1944-59, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18368187

RESUMO

Density Functional Theory calculations are reported on cage structured BN, AlN, GaN and InN sub- and low nanosize stoichiometric clusters, including two octahedral families of T(d) and T(h) symmetry. The structures and energetics are determined, and we observe that BN clusters in particular show high stability with respect to the bulk phase. The cluster formation energy is demonstrated to include a constant term that we attribute to the curvature energy and the formation of six tetragonal defects. The (BN)(60) onion double-bubble structure was found to be particularly unstable. In contrast, similar or greater stability was found for double and single shell cages for the other nitrides. The optical absorption spectra have been first characterised by the one-electron Kohn-Sham orbital energies for all compounds, after which we concentrated on BN where we employed a recently developed Time Dependent Density Functional Theory approach. The one-electron band gaps do not show a strong and consistent size dependency, in disagreement with the predictions of quantum confinement theory. The density of excited bound states and absorption spectrum have been calculated for four smallest BN clusters within the first ionisation potential cut-off energy. The relative stability of different BN clusters has been further explored by studying principal point defects and their complexes including topological B-N bond rotational defects, vacancies, antisites and interstititials. The latter have the lowest energy of formation.


Assuntos
Compostos de Boro/química , Boro/química , Nanotecnologia/métodos , Nanotubos/química , Nitrogênio/química , Óptica e Fotônica , Absorção , Algoritmos , Elétrons , Modelos Moleculares , Tamanho da Partícula , Teoria Quântica , Termodinâmica
10.
J Phys Chem B ; 109(33): 15741-8, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16852997

RESUMO

The effect of the nanostructure on the photochemistry of TiO2 is an active field of research owing to its applications in photocatalysis and photovoltaics. Despite this interest, little is known of the structure of small particles of this oxide with sizes at the nanometer length scale. Here we present a computational study that locates the global minima in the potential energy surface of Ti(n)O2n clusters with n = 1-15. The search procedure does not refer to any of the known TiO2 polymorphs, and is based on a novel combination of simulated annealing and Monte Carlo basin hopping simulations, together with genetic algorithm techniques, with the energy calculated by means of an interatomic potential. The application of several different methods increases our confidence of having located the global minimum. The stable structures are then refined by means of density functional theory calculations. The results from the two techniques are similar, although the methods based on interatomic potentials are unable to describe some subtle effects. The agreement is especially good for the larger particles, with n = 9-15. For these sizes the structures are compact, with a preference for a central octahedron and a surrounding layer of 4- and 5-fold coordinated Ti atoms, although there seems to be some energy penalty for particles containing the 5-fold coordinated metal atoms with square base pyramid geometry and dangling Ti=O bonds. The novel structures reported provide the basis for further computational studies of the effect of nanostructure on adsorption, photochemistry, and nucleation of this material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...